Arkadiusz Nawrocki
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arkadiusz Nawrocki.
PLOS ONE | 2011
Sanne Skovgård Veidal; Morten A. Karsdal; Efstathios Vassiliadis; Arkadiusz Nawrocki; Martin R. Larsen; Quoc Hai Trieu Nguyen; Per Hägglund; Yunyun Luo; Qinlong Zheng; Ben Vainer; Diana Julie Leeming
Background and Aims During fibrogenesis, in which excessive remodeling of the extracellular matrix occurs, both the quantity of type VI collagen and levels of matrix metalloproteinases, including MMP-2 and MMP-9, increase significantly. Proteolytic degradation of type VI collagen into small fragments, so-called neo-epitopes, may be specific biochemical marker of liver fibrosis. The aim of this study was to develop an ELISA detecting a fragment of type VI collagen generated by MMP-2 and MMP-9, and evaluate this assay in two preclinical models of liver fibrosis. Methods Mass spectrometric analysis of cleaved type VI collagen revealed a large number of protease-generated neo-epitopes. A fragment unique to type VI collagen generated by MMP-2 and MMP-9 was selected for ELISA development. The CO6-MMP assay was evaluated in two rat models of liver fibrosis: bile duct ligation (BDL) and carbon tetrachloride (CCl4)-treated rats. Results Intra- and inter-assay variation was 4.1% and 10.1% respectively. CO6-MMP levels were significantly elevated in CCl4-treated rats compared to vehicle-treated rats at weeks 12 (mean 30.9 ng/mL vs. 12.8 ng/mL, p = 0.002); week 16 (mean 34.0 ng/mL vs. 13.7 ng/mL, p = 0.0018); and week 20 (mean 35.3 ng/mL vs. 13.3 ng/mL, p = 0.0033) with a tight correlation between hepatic collagen content and serum levels of CO6-MMP (R2 = 0.58, p<0.0001) in CCl4- treated rats. In BDL rats, serum levels of CO6-MMP were significantly elevated compared to the levels in sham-operated animals both at 2 weeks (mean 29.5 ng/mL vs. 14.2 ng/mL, p = 0.0001) and 4 weeks (mean 33.0 ng/mLvs. 11.8 ng/mL, p = 0.0003). Conclusions This novel ELISA is the first assay enabling assessment of MMP degraded type VI collagen, allowing quantification of type VI collagen degradation, which would be relevant for different pathologies. The marker was highly associated with liver fibrosis in two liver fibrosis animal models, suggesting type VI turnover to be a central player in fibrogenesis.
Proteomics | 2014
Dennis K. Jeppesen; Arkadiusz Nawrocki; Steffen Grann Jensen; Kasper Thorsen; Bradley Whitehead; Kenneth A. Howard; Lars Dyrskjøt; Torben F. Ørntoft; Martin R. Larsen; Marie Stampe Ostenfeld
Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13‐ to 16‐fold increased exosome yield and facilitated quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ proteomics. We identified several proteins linked to epithelial–mesenchymal transition, including increased abundance of vimentin and hepatoma‐derived growth factor in the membrane, and casein kinase II α and annexin A2 in the lumen of exosomes, respectively, from metastatic cells. The change in exosome protein abundance correlated little, although significant for FL3 versus T24, with changes in cellular mRNA expression. Our proteomic approach may help identification of proteins in the membrane and lumen of exosomes potentially involved in the metastatic process.
PLOS ONE | 2013
Jannie Marie Bülow Sand; Lise Skakkebæk Larsen; Cory M. Hogaboam; Fernando J. Martinez; MeiLan K. Han; Martin R. Larsen; Arkadiusz Nawrocki; Qinlong Zheng; Morten A. Karsdal; Diana Julie Leeming
Objectives Fibrosis is characterized by excessive tissue remodeling resulting from altered expression of various growth factors, cytokines and proteases. We hypothesized that matrix metalloproteinase (MMP) mediated degradation of type IV collagen, a main component of the basement membrane, will release peptide fragments (neo-epitopes) into the circulation. Here we present the development of two competitive enzyme-linked immunosorbent assays (ELISAs) for assessing the levels of specific fragments of type IV collagen α1 (C4M12a1) and α3 (C4M12a3) chains in serum as indicators of fibrosis. Methods Fragments of type IV collagen cleaved in vitro by MMP-12 were identified by mass spectrometry, and two were chosen for ELISA development due to their unique sequences. The assays were evaluated using samples from a carbon tetrachloride (CCl4) rat model of liver fibrosis and from patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD). Results Two technically robust ELISAs were produced using neo-epitope specific monoclonal antibodies. Mean serum C4M12a1 levels were significantly elevated in CCl4-treated rats compared with controls in weeks 12, 16, and 20, with a maximum increase of 102% at week 16 (p < 0.0001). Further, C4M12a1 levels correlated with the total collagen content of the liver in CCl4-treated rats (r = 0.43, p = 0.003). Mean serum C4M12a3 levels were significantly elevated in patients with mild, moderate, and severe IPF, and COPD relative to healthy controls, with a maximum increase of 321% in COPD (p < 0.0001). Conclusions Two assays measuring C4M12a1 and C4M12a3 enabled quantification of MMP mediated degradation of type IV collagen in serum. C4M12a1 was elevated in a pre-clinical model of liver fibrosis, and C4M12a3 was elevated in IPF and COPD patients. This suggests the use of these assays to investigate pathological remodeling of the basement membrane in different organs. However, validations in larger clinical settings are needed.
Clinical Biochemistry | 2012
Sanne Skovgård Veidal; Dorthe Vang Larsen; X. Chen; S. Sun; Qinlong Zheng; A.-C. Bay-Jensen; Diana Julie Leeming; Arkadiusz Nawrocki; Martin R. Larsen; Georg Schett; Morten A. Karsdal
OBJECTIVES Type V collagen has been demonstrated to control fibril formation. The aim of this study was to develop an ELISA capable of detecting a fragment of type V collagen generated by MMP-2/9 and to evaluate the assay as biomarker for ankylosing spondylitis (AS). DESIGN AND METHODS A fragment unique to type V collagen and generated by both MMP-2/9 cleaved at the amino acid position 1317 (C5M) was selected for ELISA development. 40 AS patients and 40 age-matched controls were evaluated. RESULTS An ELISA detecting C5M with inter- and intra-assay variations of 9.1% and 4.4% was developed. C5M levels were significantly higher in AS patients compared to controls, 229% (p<0.0001). The diagnostic AUC was 83%. CONCLUSIONS This ELISA is the first for detecting type V collagen degradation. AS patients had highly elevated levels of MMP mediated type V collagen degradation. The prognostic and diagnostic values need to be further investigated in additional clinical settings.
BMC Pulmonary Medicine | 2012
Helene Skjøt-Arkil; Rikke Elgaard Clausen; Quoc Hai Trieu Nguyen; Yaguo Wang; Qinlong Zheng; Fernando J. Martinez; Cory M. Hogaboam; MeiLan K. Han; Lloyd B. Klickstein; Martin R. Larsen; Arkadiusz Nawrocki; Diana Julie Leeming; Morten A. Karsdal
BackgroundElastin is an essential component of selected connective tissues that provides a unique physiological elasticity. Elastin may be considered a signature protein of lungs where matrix metalloprotease (MMP) -9-and -12, may be considered the signature proteases of the macrophages, which in part are responsible for tissue damage during disease progression. Thus, we hypothesized that a MMP-9/-12 generated fragment of elastin may be a relevant biochemical maker for lung diseases.MethodsElastin fragments were identified by mass-spectrometry and one sequence, generated by MMP-9 and -12 (ELN-441), was selected for monoclonal antibody generation and used in the development of an ELISA. Soluble and insoluble elastin from lung was cleaved in vitro and the time-dependent release of fragments was assessed in the ELN-441 assay. The release of ELN-441 in human serum from patients with chronic obstructive pulmonary disease (COPD) (n = 10) and idiopathic pulmonary fibrosis (IPF) (n = 29) were compared to healthy matched controls (n = 11).ResultsThe sequence ELN-441 was exclusively generated by MMP-9 and -12 and was time-dependently released from soluble lung elastin. ELN-441 levels were 287% higher in patients diagnosed with COPD (p < 0.001) and 124% higher in IPF patients (p < 0.0001) compared with controls. ELN-441 had better diagnostic value in COPD patients (AUC 97%, p = 0.001) than in IPF patients (AUC 90%, p = 0.0001). The odds ratios for differentiating controls from COPD or IPF were 24 [2.06–280] for COPD and 50 [2.64–934] for IPF.ConclusionsMMP-9 and -12 time-dependently released the ELN-441 epitope from elastin. This fragment was elevated in serum from patients with the lung diseases IPF and COPD, however these data needs to be validated in larger clinical settings.
Fibrogenesis & Tissue Repair | 2013
Federica Genovese; Natasha Barascuk; Lise Skakkebæk Larsen; Martin R. Larsen; Arkadiusz Nawrocki; Yili Li; Qinlong Zheng; J. Wang; Sanne Skovgård Veidal; Diana Julie Leeming; Morten A. Karsdal
BackgroundThe proteoglycan biglycan (BGN) is involved in collagen fibril assembly and its fragmentation is likely to be associated with collagen turnover during the pathogenesis of diseases which involve dysregulated extracellular matrix remodeling (ECMR), such as rheumatoid arthritis (RA) and liver fibrosis. The scope of the present study was to develop a novel enzyme-linked immunosorbent assay (ELISA) for the measurement of a MMP-9 and MMP-12-generated biglycan neo-epitope and to test its biological validity in a rat model of RA and in two rat models of liver fibrosis, chosen as models of ECMR.ResultsBiglycan was cleaved in vitro by MMP-9 and -12 and the 344′YWEVQPATFR′353 peptide (BGM) was chosen as a potential neo-epitope. A technically sound competitive ELISA for the measurement of BGM was generated and the assay was validated in a bovine cartilage explant culture (BEX), in a collagen induced model of rheumatoid arthritis (CIA) and in two different rat models of liver fibrosis: the carbon tetrachloride (CCL4)-induced fibrosis model, and the bile duct ligation (BDL) model. Significant elevation in serum BGM was found in CIA rats compared to controls, in rats treated with CCL4 for 16 weeks and 20 weeks compared to the control groups as well as in all groups of rats subject to BDL compared with sham operated groups. Furthermore, there was a significant correlation of serum BGM levels with the extent of liver fibrosis determined by the Sirius red staining of liver sections in the CCL4 model.ConclusionWe demonstrated that the specific tissue remodeling product of MMPs-degraded biglycan, namely the neo-epitope BGM, is correlated with pathological ECMR. This assay represents both a novel marker of ECM turnover and a potential new tool to elucidate biglycan role during the pathological processes associated with ECMR.
Proteomics | 2001
Arkadiusz Nawrocki; Stephen J. Fey; André Goffeau; Peter Roepstorff; Peter Mose Larsen
Mutations in the yeast PDR1 or PDR3 genes lead to acquisition of resistance towards various unrelated cytotoxic compounds. The broad range and different properties of these compounds indicate the existence of mechanisms which protect cellular targets, neutralise or expel the compounds from the cell. In wild type and pdr mutants, 83 proteins, out of 2706 detected by two‐dimensional gel electrophoresis, were differentially expressed. Fifty‐three of these could be identified by mass spectrometry. The functions of these 53 proteins fall into several metabolic groups demonstrating that drug resistance phenotype is a mosaic response derived from such diverse functions as stress defence, endocytosis, oxidation and reduction, amino acid synthesis and mitochondrial biogenesis. The patterns of synthesis of the selected proteins clearly demonstrates the complex interaction between Pdr1p and Pdr3p in exerting their regulatory functions. The data also indicate that, in the Saccharomyces cerevisiae pleiotropic drug resistance phenomenon, translational events exert a more decisive effect than transcription in regulating the levels of active forms of the proteins involved.
Journal of Proteomics | 2012
Sébastien Louarn; Arkadiusz Nawrocki; Merete Edelenbos; Dan Funck Jensen; Ole Nørregaard Jensen; David B. Collinge; Birgit Jensen
Many carrots are discarded during post harvest cold storage due to development of fungal infections, caused by, e.g., Mycocentrospora acerina (liquorice rot). We compared the susceptibility of carrots grown under conventional and organic agricultural practices. In one year, organically cultivated carrots showed 3× to 7× more symptoms than conventionally cultivated, when studying naturally occurring disease at 4 and 6 months, respectively. On the other hand, we have developed a bioassay for infection studies of M. acerina on carrots and observed that organic roots were more susceptible after one month of storage than conventional ones, but no differences were apparent after four or six months storage. Levels of polyacetylenes (falcarinol, falcarindiol and falcarindiol-3-acetate) did not change, whereas the isocoumarin phytoalexin (6-methoxymellein) accumulated in infected tissue as well as in healthy tissue opposite the infection. The proteomes of carrot and M. acerina were characterized, the intensity of 33 plant protein spots was significantly changed in infected roots including up regulation of defence and stress response proteins but also a decrease of proteins involved in energy metabolism. This combined metabolic and proteomic study indicates that roots respond to fungal infection through altered metabolism: simultaneous induction of 6-methoxymellein and synthesis of defence related proteins.
PLOS ONE | 2013
Helene Skjøt-Arkil; Rikke Elgaard Clausen; Lars Melholt Rasmussen; Wanchun Wang; Yaguo Wang; Qinlong Zheng; Hans Mickley; Lotte Saaby; Axel Cosmus Pyndt Diederichsen; Jess Lambrechtsen; Fernando J. Martinez; Cory M. Hogaboam; MeiLan K. Han; Martin R. Larsen; Arkadiusz Nawrocki; Ben Vainer; Dorrit Krustrup; Marina Bjørling-Poulsen; Morten A. Karsdal; Diana Julie Leeming
Background Elastin is a signature protein of the arteries and lungs, thus it was hypothesized that elastin is subject to enzymatic degradation during cardiovascular and pulmonary diseases. The aim was to investigate if different fragments of the same protein entail different information associated to two different diseases and if these fragments have the potential of being diagnostic biomarkers. Methods Monoclonal antibodies were raised against an identified fragment (the ELM-2 neoepitope) generated at the amino acid position ‘552 in elastin by matrix metalloproteinase (MMP) −9/−12. A newly identified ELM neoepitope was generated by the same proteases but at amino acid position ‘441. The distribution of ELM-2 and ELM, in human arterial plaques and fibrotic lung tissues were investigated by immunohistochemistry. A competitive ELISA for ELM-2 was developed. The clinical relevance of the ELM and ELM-2 ELISAs was evaluated in patients with acute myocardial infarction (AMI), no AMI, high coronary calcium, or low coronary calcium. The serological release of ELM-2 in patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF) was compared to controls. Results ELM and ELM-2 neoepitopes were both localized in diseased carotid arteries and fibrotic lungs. In the cardiovascular cohort, ELM-2 levels were 66% higher in serum from AMI patients compared to patients with no AMI (p<0.01). Levels of ELM were not significantly increased in these patients and no correlation was observed between ELM-2 and ELM. ELM-2 was not elevated in the COPD and IPF patients and was not correlated to ELM. ELM was shown to be correlated with smoking habits (p<0.01). Conclusions The ELM-2 neoepitope was related to AMI whereas the ELM neoepitope was related to pulmonary diseases. These results indicate that elastin neoepitopes generated by the same proteases but at different amino acid sites provide different tissue-related information depending on the disease in question.
Frontiers in Cellular and Infection Microbiology | 2018
Grith Miriam Maigaard Hermansen; Anders Boysen; Thøger Jensen Krogh; Arkadiusz Nawrocki; Lars Jelsbak; Jakob Møller-Jensen
Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrheal illness in third world countries and it especially affects children and travelers visiting these regions. ETEC causes disease by adhering tightly to the epithelial cells in a concerted effort by adhesins, flagella, and other virulence-factors. When attached ETEC secretes toxins targeting the small intestine host-cells, which ultimately leads to osmotic diarrhea. HldE is a bifunctional protein that catalyzes the nucleotide-activated heptose precursors used in the biosynthesis of lipopolysaccharide (LPS) and in post-translational protein glycosylation. Both mechanisms have been linked to ETEC virulence: Lipopolysaccharide (LPS) is a major component of the bacterial outer membrane and is needed for transport of heat-labile toxins to the host cells, and ETEC glycoproteins have been shown to play an important role for bacterial adhesion to host epithelia. Here, we report that HldE plays an important role for ETEC virulence. Deletion of hldE resulted in markedly reduced binding to the human intestinal cells due to reduced expression of colonization factor CFA/I on the bacterial surface. Deletion of hldE also affected ETEC motility in a flagella-dependent fashion. Expression of both colonization factors and flagella was inhibited at the level of transcription. In addition, the hldE mutant displayed altered growth, increased biofilm formation and clumping in minimal growth medium. Investigation of an orthogonal LPS-deficient mutant combined with mass spectrometric analysis of protein glycosylation indicated that HldE exerts its role on ETEC virulence both through protein glycosylation and correct LPS configuration. These results place HldE as an attractive target for the development of future antimicrobial therapeutics.