Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arkady Yartsev is active.

Publication


Featured researches published by Arkady Yartsev.


Journal of the American Chemical Society | 2014

Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination

Carlito S. Ponseca; Tom J. Savenije; Mohamed Abdellah; Kaibo Zheng; Arkady Yartsev; Tobjörn Pascher; Tobias Harlang; Pavel Chábera; Tõnu Pullerits; Andrey Stepanov; Jean-Pierre Wolf; Villy Sundström

Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.


Journal of Physical Chemistry Letters | 2014

Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite

Tom J. Savenije; Carlito S. Ponseca; Lucas Kunneman; Mohamed Abdellah; Kaibo Zheng; Yuxi Tian; Qiushi Zhu; Sophie E. Canton; Ivan G. Scheblykin; Tõnu Pullerits; Arkady Yartsev; Villy Sundström

Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of γ = 13 × 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T(-1.6) dependence, which we attribute to a reduction in phonon scattering (Σμ = 16 cm(2)/(V s) at 165 K). Despite the fact that Σμ increases, γ diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.


Journal of Physical Chemistry A | 2011

Photoinduced Charge Carrier Dynamics of Zn−Porphyrin−TiO2 Electrodes: The Key Role of Charge Recombination for Solar Cell Performance

Hiroshi Imahori; Soonchul Kang; Hironobu Hayashi; Mitsutaka Haruta; Hiroki Kurata; Seiji Isoda; Sophie E. Canton; Yingyot Infahsaeng; A. Kathiravan; Torbjörn Pascher; Pavel Chábera; Arkady Yartsev; Villy Sundström

Time resolved absorption spectroscopy has been used to study photoinduced electron injection and charge recombination in Zn-porphyrin sensitized nanostructured TiO(2) electrodes. The electron transfer dynamics is correlated to the performance of dye sensitized solar cells based on the same electrodes. We find that the dye/semiconductor binding can be described with a heterogeneous geometry where the Zn-porphyrin molecules are attached to the TiO(2) surface with a distribution of tilt angles. The binding angle determines the porphyrin-semiconductor electron transfer distance and charge transfer occurs through space, rather than through the bridge connecting the porphyrin to the surface. For short sensitization times (1 h), there is a direct correlation between solar cell efficiency and amplitude of the kinetic component due to long-lived conduction band electrons, once variations in light harvesting (surface coverage) have been taken into account. Long sensitization time (12 h) results in decreased solar cell efficiency because of decreased efficiency of electron injection.


Journal of the American Chemical Society | 2016

High performance all-polymer solar cells by synergistic effects of fine-tuned crystallinity and solvent annealing

Zhaojun Li; Xiaofeng Xu; Wei Zhang; Xiangyi Meng; Wei Ma; Arkady Yartsev; Olle Inganäs; Mats R. Andersson; René A. J. Janssen; Ergang Wang

Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.


Journal of the American Chemical Society | 2010

Geminate Charge Recombination in Polymer/Fullerene Bulk Heterojunction Films and Implications for Solar Cell Function

Suman Kalyan Pal; Tero Kesti; Manisankar Maiti; Fengling Zhang; Olle Inganäs; Stefan Hellström; Mats R. Andersson; Frédéric Oswald; Fernando Langa; Tomas Österman; Torbjörn Pascher; Arkady Yartsev; Villy Sundström

We have studied the influence of three different fullerene derivatives on the charge generation and recombination dynamics of polymer/fullerene bulk heterojunction (BHJ) solar cell blends. Charge generation in APFO3/[70]PCBM and APFO3/[60]PCBM is very similar and somewhat slower than charge generation in APFO3/[70]BTPF. This difference qualitatively matches the trend in free energy change of electron transfer estimated from the LUMO energies of the polymer and fullerene derivatives. The first order (geminate) charge recombination rate is significantly different for the three fullerene derivatives studied and increases in the order APFO3/[70]PCBM < APFO3/[60]PCBM < APFO3/[70]BTPF. The variation in electron transfer rate cannot be explained from the LUMO energies of the fullerene derivatives and single-step electron transfer in the Marcus inverted region and simple considerations of expected trends for the reorganization energy and free energy change. Instead we suggest that geminate charge recombination occurs from a state where electrons and holes have separated to different distances in the various materials because of an initially high charge mobility, different for different materials. In a BHJ thin film this charge separation distance is not sufficient to overcome the electrostatic attraction between electrons and holes and geminate recombination occurs on the nanosecond to hundreds of nanoseconds time scale. In a BHJ solar cell, we suggest that the internal electric field in combination with polarization effects and the dynamic nature of polarons are key features to overcome electron-hole interactions to form free extractable charges.


Nature Communications | 2013

Visualizing charge separation in bulk heterojunction organic solar cells

D. Amarasinghe Vithanage; Andrius Devižis; Vytautas Abramavičius; Yingyot Infahsaeng; Darius Abramavicius; Roderick C. I. MacKenzie; Panagiotis E. Keivanidis; Arkady Yartsev; D. Hertel; Jenny Nelson; Villy Sundström; Vidmantas Gulbinas

Solar cells based on conjugated polymer and fullerene blends have been developed as a low-cost alternative to silicon. For efficient solar cells, electron-hole pairs must separate into free mobile charges that can be extracted in high yield. We still lack good understanding of how, why and when carriers separate against the Coulomb attraction. Here we visualize the charge separation process in bulk heterojunction solar cells by directly measuring charge carrier drift in a polymer:fullerene blend with ultrafast time resolution. We show that initially only closely separated (<1 nm) charge pairs are created and they separate by several nanometres during the first several picoseconds. Charge pairs overcome Coulomb attraction and form free carriers on a subnanosecond time scale. Numerical simulations complementing the experimental data show that fast three-dimensional charge diffusion within an energetically disordered medium, increasing the entropy of the system, is sufficient to drive the charge separation process.


Journal of Chemical Physics | 2005

Exciton migration in a polythiophene: Probing the spatial and energy domain by line-dipole Forster-type energy transfer

Sebastian Westenhoff; Clément Daniel; Richard H. Friend; Carlos Silva; Villy Sundström; Arkady Yartsev

We study exciton migration in low molecular weight poly[3-(2,5-dioctylphenyl)thiophene] in dilute solution by means of ultrafast spectroscopy and Monte Carlo simulations of resonance energy transfer using the line-dipole Forster approach. The model includes the build-up of polymer chains, site-selective exciton generation, and diffusion through incoherent energy transfer. Time-resolved, ensemble-averaged experimental data are reproduced, namely photoluminescence spectral migration and stimulated emission anisotropy decays measured by streak camera and femtosecond transient absorption spectroscopy under site-selective excitation conditions. Importantly, the relatively simple line-dipole Forster-type approach beyond the point-dipole approximation reproduces both experiments quantitatively. Since explicit chain conformations are used in the model, the simulations yield a descriptive microscopic picture of exciton migration. The effective conjugation length (l(seg)=2.9 nm, 7.4 monomer units) and the disorder of the chains (Omega=0.8) are yielded as the only fitting parameters. We find an extra component that is not covered by our fits in anisotropy decays at early times for high excitation energies. This is interpreted within the context that the effective conjugation is limited by conformational disorder.


Nano Letters | 2015

Giant Photoluminescence Blinking of Perovskite Nanocrystals Reveals Single-Trap Control of Luminescence.

Yuxi Tian; Aboma Merdasa; Maximilian Peter; Mohamed Abdellah; Kaibo Zheng; Carlito S. Ponseca; Tõnu Pullerits; Arkady Yartsev; Villy Sundström; Ivan G. Scheblykin

Fluorescence super-resolution microscopy showed correlated fluctuations of photoluminescence intensity and spatial localization of individual perovskite (CH3NH3PbI3) nanocrystals of size ∼200 × 30 × 30 nm(3). The photoluminescence blinking amplitude caused by a single quencher was a hundred thousand times larger than that of a typical dye molecule at the same excitation power density. The quencher is proposed to be a chemical or structural defect that traps free charges leading to nonradiative recombination. These trapping sites can be activated and deactivated by light.


Journal of Physical Chemistry B | 2004

Photoinduced Ultrafast Dynamics of Ru(dcbpy)2(NCS)2-Sensitized Nanocrystalline TiO2 Films: The Influence of Sample Preparation and Experimental Conditions

Jani Kallioinen; Gabor Benkö; Pasi Myllyperkiö; Leonid Khriachtchev; Björn Skårman; Reine Wallenberg; Markus Tuomikoski; Jouko Korppi-Tommola; Villy Sundström; Arkady Yartsev

In most of the previous ultrafast electron injection studies of Ru(dcbpy)2(NCS)2-sensitized nanocrystalline TiO2 films, experimental conditions and sample preparation have been different from study to study and no studies of how the differences affect the observed dynamics have been reported. In the present paper, we have investigated the influence of such modifications. Pump photon density, environment of the sensitized film (solvent and air), and parameters of the film preparation (crystallinity and quality of the film) were varied in a systematic way and the obtained dynamics were compared to that of a well-defined reference sample: Ru(dcbpy)2(NCS)2-TiO2 in acetonitrile. In some cases, the induced changes in the dynamics were uncorrelated to the electron injection process. High pump photon density (not in the linear response region) and exposure of the sensitized film to air altered the picosecond-time-scale kinetics considerably, and the changes were attributed mostly to degradation of the dye. In other cases, changes in the measured kinetics were related to the electron injection processes: reducing the firing temperature of the nanocrystalline film or making the film via electron beam evaporation (EBE) resulted in a decrease of the overall crystallinity of the film, and the electron injection slowed. In the sensitized EBE films, in addition to an increased contribution of triplet excited-state electron injection, a new electron transfer (ET) process with a time constant of 200 fs was observed.


Chemical Physics Letters | 1999

Photodissociation dynamics of diiodomethane in solution

Alexander N. Tarnovsky; Jose-Luis Alvarez; Arkady Yartsev; Villy Sundström; Eva Åkesson

Abstract We have studied the photodissociation dynamics of diiodomethane (CH2I2) in acetonitrile by femtosecond pump–probe spectroscopy. The reaction was initiated using 310 nm light and the transient absorption was measured over a spectral region from 290 to 1220 nm. The wavepacket leaves the initially excited Franck–Condon region on the CH2I2 potential surface on a timescale of 350 fs. The CH2I fragment is observed within the timespan of 0.3–3 ps. The hot photoproduct, assigned to be the isomer of diiodomethane CH2I–I, appears with a characteristic time of 1 ps and vibrationally relaxes on a timescale of 10 ps.

Collaboration


Dive into the Arkady Yartsev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ergang Wang

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge