Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arlene L. Oei is active.

Publication


Featured researches published by Arlene L. Oei.


Radiation Oncology | 2015

Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all.

Arlene L. Oei; Lianne E.M. Vriend; J. Crezee; Nicolaas A. P. Franken; Przemek M. Krawczyk

The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.


International Journal of Oncology | 2013

Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review).

Nicolaas A. P. Franken; Arlene L. Oei; H. Petra Kok; Hans M. Rodermond; Peter Sminia; J. Crezee; Lukas J.A. Stalpers; Gerrit W. Barendsen

The linear-quadratic model (LQ model) provides a biologically plausible and experimentally established method to quantitatively describe the dose-response to irradiation in terms of clonogenic survival. In the basic LQ formula, the clonogenic surviving fraction Sd/S₀ following a radiation dose d (Gy) is described by an inverse exponential approximation: Sd/S₀ = e-(αd+βd²), wherein α and β are experimentally derived parameters for the linear and quadratic terms, respectively. Radiation is often combined with other agents to achieve radiosensitisation. In this study, we reviewed radiation enhancement ratios of hyperthermia (HT), halogenated pyrimidines (HPs), various cytostatic drugs and poly(ADP-ribose) polymerase‑1 (PARP1) inhibitors expressed in the parameters α and β derived from cell survival curves of various mammalian cell cultures. A significant change in the α/β ratio is of direct clinical interest for the selection of optimal fractionation schedules in radiation oncology, influencing the dose per fraction, dose fractionation and dose rate in combined treatments. The α/β ratio may increase by a mutually independent increase of α or decrease of β. The results demonstrated that the different agents increased the values of both α and β. However, depending on culture conditions, both parameters can also be separately influenced. Moreover, it appeared that radiosensitisation was more effective in radioresistant cell lines than in radiosensitive cell lines. Furthermore, radiosensitisation is also dependent on the cell cycle stage, such as the plateau or exponentially growing phase, as well as on post-treatment plating conditions. The LQ model provides a useful tool in the quantification of the effects of radiosensitising agents. These insights will help optimize fractionation schedules in multimodality treatments.


International Journal of Hyperthermia | 2016

Thermoradiotherapy planning: Integration in routine clinical practice

Hans Crezee; Caspar M. van Leeuwen; Arlene L. Oei; Lukas J.A. Stalpers; A. Bel; Nicolaas A. P. Franken; H. Petra Kok

Abstract Planning of combined radiotherapy and hyperthermia treatments should be performed taking the synergistic action between the two modalities into account. This work evaluates the available experimental data on cytotoxicity of combined radiotherapy and hyperthermia treatment and the requirements for integration of hyperthermia and radiotherapy treatment planning into a single planning platform. The underlying synergistic mechanisms of hyperthermia include inhibiting DNA repair, selective killing of radioresistant hypoxic tumour tissue and increased radiosensitivity by enhanced tissue perfusion. Each of these mechanisms displays different dose-effect relations, different optimal time intervals and different optimal sequences between radiotherapy and hyperthermia. Radiosensitisation can be modelled using the linear-quadratic (LQ) model to account for DNA repair inhibition by hyperthermia. In a recent study, an LQ model-based thermoradiotherapy planning (TRTP) system was used to demonstrate that dose escalation by hyperthermia is equivalent to ∼10 Gy for prostate cancer patients treated with radiotherapy. The first step for more reliable TRTP is further expansion of the data set of LQ parameters for normally oxygenated normal and tumour tissue valid over the temperature range used clinically and for the relevant time intervals between radiotherapy and hyperthermia. The next step is to model the effect of hyperthermia in hypoxic tumour cells including the physiological response to hyperthermia and the resulting reoxygenation. Thermoradiotherapy planning is feasible and a necessity for an optimal clinical application of hyperthermia combined with radiotherapy in individual patients.


Cancer Research | 2015

Hyperthermia Selectively Targets Human Papillomavirus in Cervical Tumors via p53-Dependent Apoptosis

Arlene L. Oei; Caspar M. van Leeuwen; Rosemarie ten Cate; Hans M. Rodermond; Marrije R. Buist; Lukas J.A. Stalpers; J. Crezee; H. Petra Kok; Jan Paul Medema; Nicolaas A. P. Franken

Human papillomavirus (HPV) is associated with cervical cancer, the third most common cancer in women. The high-risk HPV types 16 and 18 are found in over 70% of cervical cancers and produce the oncoprotein, early protein 6 (E6), which binds to p53 and mediates its ubiquitination and degradation. Targeting E6 has been shown to be a promising treatment option to eliminate HPV-positive tumor cells. In addition, combined hyperthermia with radiation is a very effective treatment strategy for cervical cancer. In this study, we examined the effect of hyperthermia on HPV-positive cells using cervical cancer cell lines infected with HPV 16 and 18, in vivo tumor models, and ex vivo-treated patient biopsies. Strikingly, we demonstrate that a clinically relevant hyperthermia temperature of 42 °C for 1 hour resulted in E6 degradation, thereby preventing the formation of the E6-p53 complex and enabling p53-dependent apoptosis and G2-phase arrest. Moreover, hyperthermia combined with p53 depletion restored both the cell-cycle distribution and apoptosis to control levels. Collectively, our findings provide new insights into the treatment of HPV-positive cervical cancer and suggest that hyperthermia therapy could improve patient outcomes.


International Journal of Hyperthermia | 2017

Targeting therapy-resistant cancer stem cells by hyperthermia

Arlene L. Oei; Lianne E.M. Vriend; Przemek M. Krawczyk; Michael R. Horsman; Nicolaas A. P. Franken; J. Crezee

Abstract Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies are limited. Here, we argue that hyperthermia – a therapeutic approach based on local heating of a tumour – is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising radiation and chemotherapy are least effective. Second, hyperthermia can modify factors that are essential for tumour survival and growth, such as the microenvironment, immune responses, vascularisation and oxygen supply. Third, hyperthermia targets multiple DNA repair pathways, which are generally upregulated in CSCs and protect them from DNA-damaging agents. Addition of hyperthermia to the therapeutic armamentarium of oncologists may thus be a promising strategy to eliminate therapy-escaping and -resistant CSCs.


International Journal of Hyperthermia | 2017

3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments

C. M. van Leeuwen; J. Crezee; Arlene L. Oei; Nicolaas A. P. Franken; Lukas J.A. Stalpers; A. Bel; H. P. Kok

Abstract Purpose: Currently, clinical decisions regarding thermoradiotherapy treatments are based on clinical experience. Quantification of the radiosensitising effect of hyperthermia allows comparison of different treatment strategies, and can support clinical decision-making regarding the optimal treatment. The software presented here enables biological evaluation of thermoradiotherapy plans through calculation of equivalent 3D dose distributions. Methods: Our in-house developed software (X-Term) uses an extended version of the linear-quadratic model to calculate equivalent radiation dose, i.e. the radiation dose yielding the same effect as the thermoradiotherapy treatment. Separate sets of model parameters can be assigned to each delineated structure, allowing tissue specific modelling of hyperthermic radiosensitisation. After calculation, the equivalent radiation dose can be evaluated according to conventional radiotherapy planning criteria. The procedure is illustrated using two realistic examples. First, for a previously irradiated patient, normal tissue dose for a radiotherapy and thermoradiotherapy plan (with equal predicted tumour control) is compared. Second, tumour control probability (TCP) is assessed for two (otherwise identical) thermoradiotherapy schedules with different time intervals between radiotherapy and hyperthermia. Results: The examples demonstrate that our software can be used for individualised treatment decisions (first example) and treatment optimisation (second example) in thermoradiotherapy. In the first example, clinically acceptable doses to the bowel were exceeded for the conventional plan, and a substantial reduction of this excess was predicted for the thermoradiotherapy plan. In the second example, the thermoradiotherapy schedule with long time interval was shown to result in a substantially lower TCP. Conclusions: Using biological modelling, our software can facilitate the evaluation of thermoradiotherapy plans and support individualised treatment decisions.


International Journal of Hyperthermia | 2018

Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i

Arlene L. Oei; Vidhula R. Ahire; C. M. van Leeuwen; Rosemarie ten Cate; Lukas J.A. Stalpers; J. Crezee; H. Petra Kok; Nicolaas A. P. Franken

Abstract Poly(ADP-ribose)polymerase1 (PARP1) is an important enzyme in regulating DNA replication. Inhibition of PARP1 can lead to collapsed DNA forks which subsequently causes genomic instability, making DNA more susceptible in developing fatal DNA double strand breaks. PARP1-induced DNA damage is generally repaired by homologous recombination (HR), in which BRCA2 proteins are essential. Therefore, BRCA2-deficient tumour cells are susceptible to treatment with PARP1-inhibitors (PARP1-i). Recently, BRCA2 was shown to be down-regulated by hyperthermia (HT) temporarily, and this consequently inactivated HR for several hours. In this study, we investigated whether HT exclusively interferes with HR by analysing thermal radiosensitisation of BRCA2-proficient and deficient cells. After elucidating the equitoxicity of PARP1-i on BRCA2-proficient and deficient cells, we studied the cell survival, apoptosis, DNA damage (γ-H2AX foci and comet assay) and cell cycle distribution after different treatments. PARP1-i sensitivity strongly depends on the BRCA2 status. BRCA2-proficient and deficient cells are radiosensitised by HT, indicating that HT does not exclusively act by inhibition of HR. In all cell lines, the addition of HT to radiotherapy and PARP1-i resulted in the lowest cell survival, the highest levels of DNA damage and apoptotic levels compared to duo-modality treatments. Concluding, HT not only inhibits HR, but also has the capability of radiosensitising BRCA2-deficient cells. Thus, in case of BRCA2-mutation carriers, combining HT with PARP1-i may boost the treatment efficacy. This combination therapy would be effective for all patients with PARP1-i regardless of their BRCA status.


Oncotarget | 2017

Sensitizing thermochemotherapy with a PARP1-inhibitor

Arlene L. Oei; Lianne E.M. Vriend; Caspar M. van Leeuwen; Hans M. Rodermond; Rosemarie ten Cate; Anneke M. Westermann; Lukas J.A. Stalpers; J. Crezee; Roland Kanaar; H. Petra Kok; Przemek M. Krawczyk; Nicolaas A. P. Franken

Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects.


International Journal of Hyperthermia | 2018

Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation

C. M. van Leeuwen; Arlene L. Oei; R. ten Cate; Nicolaas A. P. Franken; A. Bel; Lukas J.A. Stalpers; J. Crezee; H. P. Kok

Abstract Purpose: Biological modelling of thermoradiotherapy may further improve patient selection and treatment plan optimisation, but requires a model that describes the biological effect as a function of variables that affect treatment outcome (e.g. temperature, radiation dose). This study aimed to establish such a model and its parameters. Additionally, a clinical example was presented to illustrate the application. Methods: Cell survival assays were performed at various combinations of radiation dose (0–8 Gy), temperature (37–42 °C), time interval (0–4 h) and treatment sequence (radiotherapy before/after hyperthermia) for two cervical cancer cell lines (SiHa and HeLa). An extended linear-quadratic model was fitted to the data using maximum likelihood estimation. As an example application, a thermoradiotherapy plan (23 × 2 Gy + weekly hyperthermia) was compared with a radiotherapy-only plan (23 × 2 Gy) for a cervical cancer patient. The equivalent uniform radiation dose (EUD) in the tumour, including confidence intervals, was estimated using the SiHa parameters. Additionally, the difference in tumour control probability (TCP) was estimated. Results: Our model described the dependency of cell survival on dose, temperature and time interval well for both SiHa and HeLa data (R2=0.90 and R2=0.91, respectively), making it suitable for biological modelling. In the patient example, the thermoradiotherapy plan showed an increase in EUD of 9.8 Gy that was robust (95% CI: 7.7–14.3 Gy) against propagation of the uncertainty in radiobiological parameters. This corresponded to a 20% (95% CI: 15–29%) increase in TCP. Conclusions: This study presents a model that describes the cell survival as a function of radiation dose, temperature and time interval, which is essential for biological modelling of thermoradiotherapy treatments.


Oncotarget | 2017

Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia

Arlene L. Oei; Caspar M. van Leeuwen; Vidhula R. Ahire; Hans M. Rodermond; Rosemarie ten Cate; Anneke M. Westermann; Lukas J.A. Stalpers; J. Crezee; H. Petra Kok; Przemek M. Krawczyk; Roland Kanaar; Nicolaas A. P. Franken

Background Poly-(ADP-ribose)-polymerase1 (PARP1) is involved in repair of DNA single strand breaks. PARP1-inhibitors (PARP1-i) cause an accumulation of DNA double strand breaks, which are generally repaired by homologous recombination (HR). Therefore, cancer cells harboring HR deficiencies are exceptionally sensitive to PARP1-i. For patients with HR-proficient tumors, HR can be temporarily inhibited by hyperthermia, thereby inducing synthetic lethal conditions in every tumor type. Since cisplatin is successfully used combined with hyperthermia (thermochemotherapy), we investigated the effectiveness of combining PARP1-i with thermochemotherapy. Results The in vitro data demonstrate a decreased in cell survival after addition of PARP1-i to thermochemotherapy, which can be explained by increased DNA damage induction and less DSB repair. These in vitro findings are in line with in vivo model, in which a decreased tumor growth is observed upon addition of PARP1-i. Materials and Methods Survival of three HR-proficient cell lines after cisplatin, hyperthermia and/or PARP1-i was studied. Cell cycle analyses, quantification of γ-H2AX foci and apoptotic assays were performed to understand these survival data. The effects of treatments were further evaluated by monitoring tumor responses in an in vivo rat model. Conclusions Our results in HR-proficient cell lines suggest that PARP1-i combined with thermochemotherapy can be a promising clinical approach for all tumors independent of HR status.

Collaboration


Dive into the Arlene L. Oei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Crezee

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Bel

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

H. P. Kok

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Petra Kok

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge