Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arlette Pécontal-Rousset is active.

Publication


Featured researches published by Arlette Pécontal-Rousset.


Proceedings of SPIE | 2010

The MUSE second-generation VLT instrument

Roland Bacon; Matteo Accardo; L. Adjali; Heiko Anwand; Svend-Marian Bauer; I. Biswas; J. Blaizot; D. Boudon; Sylvie Brau-Nogue; Jarle Brinchmann; P. Caillier; L. Capoani; C. M. Carollo; T. Contini; P. Couderc; E. Daguisé; Sebastian Deiries; B. Delabre; S. Dreizler; Jean-Pierre Dubois; M. Dupieux; Christophe Dupuy; Eric Emsellem; T. Fechner; A. Fleischmann; Marc François; G. Gallou; T. Gharsa; Andreas Glindemann; Domingo Gojak

Summary: The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph currently in manufacturing, assembly and integration phase. MUSE has a field of 1x1 arcmin2 sampled at 0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The instrument is a large assembly of 24 identical high performance integral field units, each one composed of an advanced image slicer, a spectrograph and a 4kx4k detector. In this paper we review the progress of the manufacturing and report the performance achieved with the first integral field unit.


Proceedings of SPIE | 2012

Design and capabilities of the MUSE data reduction software and pipeline

Peter M. Weilbacher; Ole Streicher; Tanya Urrutia; Aurélien Jarno; Arlette Pécontal-Rousset; Roland Bacon; Petra Böhm

MUSE, the Multi Unit Spectroscopic Explorer,1 is an integral-field spectrograph under construction for the ESO VLT to see first light in 2013. It can record spectra of a 1′x1′ field on the sky at a sampling of 0″.2x0″.2, over a wavelength range from 4650 to 9300Å. The data reduction for this instrument is the process which converts raw data from the 24 CCDs into a combined datacube (with two spatial and one wavelength axis) which is corrected for instrumental and atmospheric effects. Since the instrument consists of many subunits (24 integral-field units, each slicing the light into 48 parts, i. e. 1152 regions with a total of almost 90000 spectra per exposure), this task requires many steps and is computationally expensive, in terms of processing speed, memory usage, and disk input/output. The data reduction software is designed to be mostly run as an automated pipeline and to fit into the open source environment of the ESO data flow as well as into a data management system based on AstroWISE. We describe the functionality of the pipeline, highlight details of new and unorthodox processing steps, discuss which algorithms and code could be used from other projects. Finally, we show the performance on both laboratory data as well as simulated scientific data.


Proceedings of SPIE | 2006

Probing unexplored territories with MUSE: a second generation instrument for the VLT

Roland Bacon; Svend-Marian Bauer; P. Boehm; D. Boudon; Sylvie Brau-Nogue; P. Caillier; L. Capoani; C. M. Carollo; N. Champavert; T. Contini; E. Daguisé; D. Dallé; Bernhard Delabre; Julien Devriendt; S. Dreizler; Jean-Pierre Dubois; M. Dupieux; J. P. Dupin; Eric Emsellem; Pierre Ferruit; Marijn Franx; G. Gallou; J. Gerssen; B. Guiderdoni; T. Hahn; D. Hofmann; Aurélien Jarno; Andreas Kelz; C. Koehler; Wolfram Kollatschny

The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph under preliminary design study. MUSE has a field of 1x1 arcmin2 sampled at 0.2x0.2 arcsec2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The simultaneous spectral range is 0.465-0.93 μm, at a resolution of R~3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec2 field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to obtain diffraction limited data-cubes in the 0.6-0.93 μm wavelength range. Although the MUSE design has been optimized for the study of galaxy formation and evolution, it has a wide range of possible applications; e.g. monitoring of outer planets atmosphere, environment of young stellar objects, super massive black holes and active nuclei in nearby galaxies or massive spectroscopic surveys of stellar fields in the Milky Way and nearby galaxies.


Proceedings of SPIE | 2016

The E-ELT first light spectrograph HARMONI: capabilities and modes

Niranjan Thatte; Fraser Clarke; Ian Bryson; Hermine Shnetler; Matthias Tecza; Thierry Fusco; Roland Bacon; Johan Richard; Evencio Mediavilla; Benoit Neichel; S. Arribas; B. García-Lorenzo; C. J. Evans; Alban Remillieux; Kacem El Madi; José Miguel Herreros; Dave Melotte; K. O'Brien; Ian Tosh; J. Vernet; P. L. Hammersley; Derek Ives; Gert Finger; Ryan C. W. Houghton; D. Rigopoulou; J. Lynn; Jamie R. Allen; Simon Zieleniewski; Sarah Kendrew; Vanessa Ferraro-Wood

HARMONI is the E-ELT’s first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 × 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquist sample the diffraction limited point spread function of the E-ELT at near-infrared wavelengths. Each spaxel scale may be combined with eleven spectral settings, that provide a range of spectral resolving powers (R ~3500, 7500 and 20000) and instantaneous wavelength coverage spanning the 0.5 – 2.4 μm wavelength range of the instrument. In autumn 2015, the HARMONI project started the Preliminary Design Phase, following signature of the contract to design, build, test and commission the instrument, signed between the European Southern Observatory and the UK Science and Technology Facilities Council. Crucially, the contract also includes the preliminary design of the HARMONI Laser Tomographic Adaptive Optics system. The instrument’s technical specifications were finalized in the period leading up to contract signature. In this paper, we report on the first activity carried out during preliminary design, defining the baseline architecture for the system, and the trade-off studies leading up to the choice of baseline.


Proceedings of SPIE | 2014

HARMONI: the first light integral field spectrograph for the E-ELT

Niranjan Thatte; Fraser Clarke; Ian Bryson; Hermine Schnetler; Matthias Tecza; Roland Bacon; Alban Remillieux; Evencio Mediavilla; J. Linares; S. Arribas; C. J. Evans; David Lunney; Thierry Fusco; K. O'Brien; Ian Tosh; Derek Ives; Gert Finger; Ryan C. W. Houghton; Roger L. Davies; J. Lynn; Jamie R. Allen; Simon Zieleniewski; Sarah Kendrew; Vanessa Ferraro-Wood; Arlette Pécontal-Rousset; Johan Kosmalski; Johan Richard; Aurélien Jarno; Angus Gallie; David M. Montgomery

HARMONI is a visible and near-infrared (0.47 to 2.45 μm) integral field spectrometer, providing the E-ELTs core spectroscopic capability, over a range of resolving powers from R (≡λ/Δλ)~500 to R~20000. The instrument provides simultaneous spectra of ~32000 spaxels at visible and near-IR wavelengths, arranged in a √2:1 aspect ratio contiguous field. HARMONI is conceived as a workhorse instrument, addressing many of the E-ELT’s key science cases, and will exploit the E-ELTs scientific potential in its early years, starting at first light. HARMONI provides a range of spatial pixel (spaxel) scales and spectral resolving powers, which permit the user to optimally configure the instrument for a wide range of science programs; from ultra-sensitive to diffraction limited, spatially resolved, physical (via morphology), chemical (via abundances and line ratios) and kinematic (via line-of-sight velocities) studies of astrophysical sources. Recently, the HARMONI design has undergone substantial changes due to significant modifications to the interface with the telescope and the architecture of the E-ELT Nasmyth platform. We present an overview of the capabilities of HARMONI, and of its design from a functional and performance viewpoint.


arXiv: Instrumentation and Methods for Astrophysics | 2018

Maunakea spectroscopic explorer low moderate resolution spectrograph conceptual design

Patrick Caillier; Will Saunders; Pierre-Henri Carton; Florence Laurent; Jean-Emmanuel Migniau; Arlette Pécontal-Rousset; Johan Richard; Christophe Yèche

The Maunakea Spectroscopic Explorer (MSE) Project is a planned replacement for the existing 3.6-m Canada France Hawaii Telescope (CFHT) into a 10-m class dedicated wide field highly multiplexed fibre fed spectroscopic facility. MSE seeks to tackle basic science questions ranging from the origin of stars and stellar systems, Galaxy archaeology at early times, galaxy evolution across cosmic time, to cosmology and the nature of dark matter and dark energy. MSE will be a primary follow-up facility for many key future photometric and astrometric surveys, as well as a major component in the study of the multi-wavelength Universe. The MSE is based on a prime focus telescope concept which illuminate 3200 fibres or more. These fibres are feeding a Low Moderate Resolution (LMR) spectrograph and a High Resolution (HR). The LMR will provide 2 resolution modes at R>2500 and R>5000 on a wavelength range of 360 to 950 nm and a resolution of R>;3000 on the 950 nm to 1300 nm bandwidth. Possibly the H band will be also covered by a second NIR mode from ranging from 1450 to 1780 nm. The HR will have a resolution of R>39000 on the 360 to 600 nm wavelength range and R>;20000 on the 600 to 900 nm bandwith. This paper presents the LMR design after its Conceptual Design Review held in June 2017. It focuses on the general concept, optical and mechanical design of the instrument. It describes the associated preliminary expected performances especially concerning optical and thermal performances.


Proceedings of SPIE | 2012

MUSE instrument global performance test

Magali Loupias; Johan Kosmalski; L. Adjali; Roland Bacon; D. Boudon; L. Brotons; P. Caillier; L. Capoani; E. Daguisé; Aurélien Jarno; G. Hansali; Andreas Kelz; F. Laurent; J. E. Migniau; Arlette Pécontal-Rousset; Laure Piqueras; Alban Remillieux; E. Renault; Ole Streicher; Peter M. Weilbacher; G. Zins

MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument developed for ESO (European Southern Observatory) and will be assembled to the VLT (Very Large Telescope) in 2013. The MUSE instrument can simultaneously record 90.000 spectra in the visible wavelength range (465-930nm), across a 1*1arcmin² field of view, thanks to 24 identical Integral Field Units (IFU). A collaboration of 7 institutes has partly validated and sent their subsystems to CRAL (Centre de Recherche Astrophysique de Lyon) in 2011, where they have been assembled together. The global test and validation process is currently going on to reach the Preliminary Acceptance in Europe in 2012. The sharing of performances has been based on 5 main functional sub-systems. The Fore Optics sub-system derotates and anamorphoses the VLT Nasmyth focal plane image, the Splitting and Relay Optics associated with the Main Structure are feeding each IFU with 1/24th of the field of view. Each IFU is composed of a 3D function insured by an image slicer system and a spectrograph, and a detection function by a 4k*4k CCD cooled down to 163°K. The 5th function is the calibration and data reduction of the instrument. This article depicts the sequence of tests that has been completely reshafled mainly due to planning constraints. It highlights the priority given to the most critical performances tests of the sub-systems and their results. It enhances then the importance given to global tests. Finally, it makes a status on the verification matrix and the validation of the instrument and gives a critical view on the risks taken.


Proceedings of SPIE | 2008

Numerical simulation of the VLT/MUSE instrument

Aurélien Jarno; Roland Bacon; Pierre Ferruit; Arlette Pécontal-Rousset

The Multi Unit Spectroscopic Explorer (MUSE) instrument is a second-generation integral-field spectrograph in development for the Very Large Telescope (VLT), operating in the visible and near IR wavelength range (465-930 nm). Given the complexity of MUSE we have developed a numerical model of the instrument, which includes the whole chain of acquisition from the atmosphere down to the telescope and including the detectors, and taking into account both optical aberrations and diffraction effects. In this paper we present the software, discuss the problems that have been encountered and the solutions that have been implemented, and we conclude by presenting examples of simulations.


Proceedings of SPIE | 2012

The MUSE project face to face with reality

P. Caillier; Matteo Accardo; L. Adjali; Heiko Anwand; Roland Bacon; D. Boudon; L. Brotons; L. Capoani; E. Daguisé; M. Dupieux; Christophe Dupuy; Marc François; Andreas Glindemann; Domingo Gojak; G. Hansali; Thomas von Hahn; Aurélien Jarno; Andreas Kelz; C. Koehler; Johan Kosmalski; F. Laurent; M. Le Floc'h; J.-L. Lizon; Magali Loupias; Antonio Manescau; J. E. Migniau; C. Monstein; H. Nicklas; L. Parès; Arlette Pécontal-Rousset

MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument built for ESO (European Southern Observatory) to be installed in Chile on the VLT (Very Large Telescope). The MUSE project is supported by a European consortium of 7 institutes. After the critical turning point of shifting from the design to the manufacturing phase, the MUSE project has now completed the realization of its different sub-systems and should finalize its global integration and test in Europe. To arrive to this point many challenges had to be overcome, many technical difficulties, non compliances or procurements delays which seemed at the time overwhelming. Now is the time to face the results of our organization, of our strategy, of our choices. Now is the time to face the reality of the MUSE instrument. During the design phase a plan was provided by the project management in order to achieve the realization of the MUSE instrument in specification, time and cost. This critical moment in the project life when the instrument takes shape and reality is the opportunity to look not only at the outcome but also to see how well we followed the original plan, what had to be changed or adapted and what should have been.


Proceedings of SPIE | 2010

The MUSE project from the dream toward reality

P. Callier; Matteo Accardo; L. Adjali; Heiko Anwand; Roland Bacon; Svend-Marian Bauer; I. Biswas; D. Boudon; Sylvie Brau-Nogue; L. Brotons; L. Capoani; T. Contini; E. Daguisé; Sebastian Deiries; B. Delabre; Jean-Pierre Dubois; M. Dupieux; C. Dupuis; T. Fechner; A. Fleischmann; Marc François; G. Gallou; T. Gharsa; Andreas Glindemann; Domingo Gojak; G. Hansali; T. Hahn; Aurélien Jarno; Andreas Kelz; C. Koehler

MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument developed for ESO (European Southern Observatory) to be installed on the VLT (Very Large Telescope) in year 2012. The MUSE project is supported by a European consortium of 7 institutes. After a successful Final Design Review the project is now facing a turning point which consist in shifting from design to manufacturing, from calculation to test, ... from dream to reality. At the start, many technical and management challenges were there as well as unknowns. They could all be derived of the same simple question: How to deal with complexity? The complexity of the instrument, of the work to de done, of the organization, of the interfaces, of financial and procurement rules, etc. This particular moment in the project life cycle is the opportunity to look back and evaluate the management methods implemented during the design phase regarding this original question. What are the lessons learn? What has been successful? What could have been done differently? Finally, we will look forward and review the main challenges of the MAIT (Manufacturing Assembly Integration and Test) phase which has just started as well as the associated new processes and evolutions needed.

Collaboration


Dive into the Arlette Pécontal-Rousset's collaboration.

Top Co-Authors

Avatar

Roland Bacon

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Aurélien Jarno

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Boudon

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

E. Daguisé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Capoani

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Adjali

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Dupieux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

P. Caillier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge