Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arlo Randall is active.

Publication


Featured researches published by Arlo Randall.


Nucleic Acids Research | 2005

SCRATCH: a protein structure and structural feature prediction server

Jianlin Cheng; Arlo Randall; Michael J. Sweredoski; Pierre Baldi

SCRATCH is a server for predicting protein tertiary structure and structural features. The SCRATCH software suite includes predictors for secondary structure, relative solvent accessibility, disordered regions, domains, disulfide bridges, single mutation stability, residue contacts versus average, individual residue contacts and tertiary structure. The user simply provides an amino acid sequence and selects the desired predictions, then submits to the server. Results are emailed to the user. The server is available at .


Proteins | 2005

Prediction of Protein Stability Changes for Single-Site Mutations Using Support Vector Machines

Jianlin Cheng; Arlo Randall; Pierre Baldi

Accurate prediction of protein stability changes resulting from single amino acid mutations is important for understanding protein structures and designing new proteins. We use support vector machines to predict protein stability changes for single amino acid mutations leveraging both sequence and structural information. We evaluate our approach using cross‐validation methods on a large dataset of single amino acid mutations. When only the sign of the stability changes is considered, the predictive method achieves 84% accuracy—a significant improvement over previously published results. Moreover, the experimental results show that the prediction accuracy obtained using sequence alone is close to the accuracy obtained using tertiary structure information. Because our method can accurately predict protein stability changes using primary sequence information only, it is applicable to many situations where the tertiary structure is unknown, overcoming a major limitation of previous methods which require tertiary information. The web server for predictions of protein stability changes upon mutations (MUpro), software, and datasets are available at http://www.igb.uci.edu/servers/servers.html. Proteins 2006.


Proteomics | 2008

Profiling humoral immune responses to P. falciparum infection with protein microarrays

Denise L. Doolan; Yunxiang Mu; Berkay Unal; Suman Sundaresh; Siddiqua Hirst; Conrad Valdez; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Daniel Freilich; J. Aggrey Oloo; Peter L. Blair; Joao C. Aguiar; Pierre Baldi; D. Huw Davies; Philip L. Felgner

A complete description of the serological response following exposure of humans to complex pathogens is lacking and approaches suitable for accomplishing this are limited. Here we report, using malaria as a model, a method which elucidates the profile of antibodies that develop after natural or experimental infection or after vaccination with attenuated organisms, and which identifies immunoreactive antigens of interest for vaccine development or other applications. Expression vectors encoding 250 Plasmodium falciparum (Pf) proteins were generated by PCR/recombination cloning; the proteins were individually expressed with >90% efficiency in Escherichia coli cell‐free in vitro transcription and translation reactions, and printed directly without purification onto microarray slides. The protein microarrays were probed with human sera from one of four groups which differed in immune status: sterile immunity or no immunity against experimental challenge following vaccination with radiation‐attenuated Pf sporozoites, partial immunity acquired by natural exposure, and no previous exposure to Pf. Overall, 72 highly reactive Pf antigens were identified. Proteomic features associated with immunoreactivity were identified. Importantly, antibody profiles were distinct for each donor group. Information obtained from such analyses will facilitate identifying antigens for vaccine development, dissecting the molecular basis of immunity, monitoring the outcome of whole‐organism vaccine trials, and identifying immune correlates of protection.


Molecular & Cellular Proteomics | 2011

Development of a Novel Cross-linking Strategy for Fast and Accurate Identification of Cross-linked Peptides of Protein Complexes

Athit Kao; Chi-li Chiu; Danielle Vellucci; Yingying Yang; Vishal R. Patel; Shenheng Guan; Arlo Randall; Pierre Baldi; Scott D. Rychnovsky; Lan Huang

Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS3 analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS3) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes.


Bioinformatics | 2009

SOLpro: accurate sequence-based prediction of protein solubility

Christophe N. Magnan; Arlo Randall; Pierre Baldi

MOTIVATION Protein insolubility is a major obstacle for many experimental studies. A sequence-based prediction method able to accurately predict the propensity of a protein to be soluble on overexpression could be used, for instance, to prioritize targets in large-scale proteomics projects and to identify mutations likely to increase the solubility of insoluble proteins. RESULTS Here, we first curate a large, non-redundant and balanced training set of more than 17 000 proteins. Next, we extract and study 23 groups of features computed directly or predicted (e.g. secondary structure) from the primary sequence. The data and the features are used to train a two-stage support vector machine (SVM) architecture. The resulting predictor, SOLpro, is compared directly with existing methods and shows significant improvement according to standard evaluation metrics, with an overall accuracy of over 74% estimated using multiple runs of 10-fold cross-validation.


intelligent systems in molecular biology | 2007

From protein microarrays to diagnostic antigen discovery

Suman Sundaresh; Arlo Randall; Berkay Unal; Jeannine M. Petersen; John T. Belisle; M. Gill Hartley; Melanie Duffield; Richard W. Titball; D. Huw Davies; Philip Felgner; Pierre Baldi

MOTIVATION An important application of protein microarray data analysis is identifying a serodiagnostic antigen set that can reliably detect patterns and classify antigen expression profiles. This work addresses this problem using antibody responses to protein markers measured by a novel high-throughput microarray technology. The findings from this study have direct relevance to rapid, broad-based diagnostic and vaccine development. RESULTS Protein microarray chips are probed with sera from individuals infected with the bacteria Francisella tularensis, a category A biodefense pathogen. A two-step approach to the diagnostic process is presented (1) feature (antigen) selection and (2) classification using antigen response measurements obtained from F.tularensis microarrays (244 antigens, 46 infected and 54 healthy human sera measurements). To select antigens, a ranking scheme based on the identification of significant immune responses and differential expression analysis is described. Classification methods including k-nearest neighbors, support vector machines (SVM) and k-Means clustering are applied to training data using selected antigen sets of various sizes. SVM based models yield prediction accuracy rates in the range of approximately 90% on validation data, when antigen set sizes are between 25 and 50. These results strongly indicate that the top-ranked antigens can be considered high-priority candidates for diagnostic development. AVAILABILITY All software programs are written in R and available at http://www.igb.uci.edu/index.php?page=tools and at http://www.r-project.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability

Dora L. Guzmán; Arlo Randall; Pierre Baldi; Zhibin Guan

Resolving molecular determinants of mechanical stability of proteins is crucial in the rational design of advanced biomaterials for use in biomedical and nanotechnological applications. Here we present an interdisciplinary study combining bioinformatics screening, steered molecular dynamics simulations, protein engineering, and single-molecule force spectroscopy that explores the mechanical properties of a macro domain protein with mixed α + β topology. The unique architecture is defined by a single seven-stranded β-sheet in the core of the protein flanked by five α-helices. Unlike mechanically stable proteins studied thus far, the macro domain provides the distinct advantage of having the key load-bearing hydrogen bonds (H bonds) buried in the hydrophobic core protected from water attacks. This feature allows direct measurement of the force required to break apart the load-bearing H bonds under locally hydrophobic conditions. Steered molecular dynamics simulations predicted extremely high mechanical stability of the macro domain by using constant velocity and constant force methods. Single-molecule force spectroscopy experiments confirm the exceptional mechanical strength of the macro domain, measuring a rupture force as high as 570 pN. Furthermore, through selective deletion of shielding peptide segments, we examined the same key H bonds under hydrophilic environments in which the β-strands are exposed to solvent and verify that the high mechanical stability of the macro domain results from excellent shielding of the load-bearing H bonds from competing water. Our study reveals that shielding water accessibility to the load-bearing strands is a critical molecular determinant for enhancing the mechanical stability of proteins.


Bioinformatics | 2010

High-throughput prediction of protein antigenicity using protein microarray data

Christophe N. Magnan; Michael Zeller; Matthew A. Kayala; Adam Vigil; Arlo Randall; Philip L. Felgner; Pierre Baldi

MOTIVATION Discovery of novel protective antigens is fundamental to the development of vaccines for existing and emerging pathogens. Most computational methods for predicting protein antigenicity rely directly on homology with previously characterized protective antigens; however, homology-based methods will fail to discover truly novel protective antigens. Thus, there is a significant need for homology-free methods capable of screening entire proteomes for the antigens most likely to generate a protective humoral immune response. RESULTS Here we begin by curating two types of positive data: (i) antigens that elicit a strong antibody response in protected individuals but not in unprotected individuals, using human immunoglobulin reactivity data obtained from protein microarray analyses; and (ii) known protective antigens from the literature. The resulting datasets are used to train a sequence-based prediction model, ANTIGENpro, to predict the likelihood that a protein is a protective antigen. ANTIGENpro correctly classifies 82% of the known protective antigens when trained using only the protein microarray datasets. The accuracy on the combined dataset is estimated at 76% by cross-validation experiments. Finally, ANTIGENpro performs well when evaluated on an external pathogen proteome for which protein microarray data were obtained after the initial development of ANTIGENpro. AVAILABILITY ANTIGENpro is integrated in the SCRATCH suite of predictors available at http://scratch.proteomics.ics.uci.edu. CONTACT [email protected]


The Journal of Infectious Diseases | 2015

Plasmodium falciparum Protein Microarray Antibody Profiles Correlate With Protection From Symptomatic Malaria in Kenya

Arlene E. Dent; Rie Nakajima; Li Liang; Elisabeth Baum; Ann M. Moormann; Peter Odada Sumba; John M. Vulule; Denise C. Babineau; Arlo Randall; D. Huw Davies; Philip L. Felgner; James W. Kazura

BACKGROUND Immunoglobulin G antibodies (Abs) to Plasmodium falciparum antigens have been associated with naturally acquired immunity to symptomatic malaria. METHODS We probed protein microarrays covering 824 unique P. falciparum protein features with plasma from residents of a community in Kenya monitored for 12 weeks for (re)infection and symptomatic malaria after administration of antimalarial drugs. P. falciparum proteins recognized by Abs from 88 children (aged 1-14 years) and 86 adults (aged ≥ 18 years), measured at the beginning of the observation period, were ranked by Ab signal intensity. RESULTS Abs from immune adults reacted with a total 163 of 824 P. falciparum proteins. Children gradually acquired Abs to the full repertoire of antigens recognized by adults. Abs to some antigens showed high seroconversion rates, reaching maximal levels early in childhood, whereas others did not reach adult levels until adolescence. No correlation between Ab signal intensity and time to (re)infection was observed. In contrast, Ab levels to 106 antigens were significantly higher in children who were protected from symptomatic malaria compared with those who were not. Abs to antigens predictive of protection included P. falciparum erythrocyte membrane protein 1, merozoite surface protein (MSP) 10, MSP2, liver-stage antigen 3, PF70, MSP7, and Plasmodium helical interspersed subtelomeric domain protein. CONCLUSIONS Protein microarrays may be useful in the search for malaria antigens associated with protective immunity.


Malaria Journal | 2015

Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence

Elisabeth Baum; Jetsumon Sattabongkot; Jeeraphat Sirichaisinthop; Kirakorn Kiattibutr; David Huw Davies; Aarti Jain; Eugenia Lo; Ming-Chieh Lee; Arlo Randall; Douglas M. Molina; Xiaowu Liang; Liwang Cui; Philip L. Felgner; Guiyun Yan

BackgroundMalaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels.MethodsThree-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals.ResultsOf 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others.ConclusionThese findings suggest that parasite prevalence is higher than currently estimated by local authorities based on the standard light microscopy. As transmission levels drop in Thailand, it may be necessary to employ higher throughput and sensitivity methods for parasite detection in the phase of malaria elimination.

Collaboration


Dive into the Arlo Randall's collaboration.

Top Co-Authors

Avatar

Pierre Baldi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Huw Davies

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaowu Liang

University of California

View shared research outputs
Top Co-Authors

Avatar

Jozelyn Pablo

University of California

View shared research outputs
Top Co-Authors

Avatar

Rie Nakajima

University of California

View shared research outputs
Top Co-Authors

Avatar

Athit Kao

University of California

View shared research outputs
Top Co-Authors

Avatar

Berkay Unal

University of California

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Baum

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge