Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armagan Kocer is active.

Publication


Featured researches published by Armagan Kocer.


ACS Chemical Biology | 2014

Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

Helgi I. Ingólfsson; Pratima Thakur; Karl F. Herold; E. Ashley Hobart; Nicole Ramsey; Xavier Periole; Djurre H. de Jong; Martijn Zwama; Duygu Yilmaz; Katherine Hall; Thorsten Maretzky; Hugh C. Hemmings; Carl P. Blobel; Siewert J. Marrink; Armagan Kocer; Jon T. Sack; Olaf S. Andersen

A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.


Nature Protocols | 2007

Synthesis and utilization of reversible and irreversible light-activated nanovalves derived from the channel protein MscL

Armagan Kocer; Martin Walko; Bernard Feringa

This protocol details the chemical modification of the mechanosensitive channel of large-conductance (MscL) channel protein into a light-activated nanovalve and its utilization for triggered delivery in synthetic liposomal vesicles. It is based on charge-induced activation of this otherwise mechanosensitive channel by covalent attachment to the protein of rationally designed synthetic functionalities. In the dark, these functionalities will be uncharged and the channel will stay closed, but UV illumination will cause their ionization and trigger channel activity. In the case of reversible activation, subsequent illumination with visible light will neutralize the charge, causing the channel to close. The protocol includes synthesis of light-responsive compounds, protein isolation and its chemical labeling, reconstitution of the protein into artificial membranes, its analysis at the single-molecule level and its application in liposomal delivery. The whole protocol takes 4 days. Unlike mutagenesis, this method allows the introduction of custom-designed functional groups.


Biophysical Journal | 2011

The Molecular Basis for Antimicrobial Activity of Pore-Forming Cyclic Peptides

Anna D. Cirac; Gemma Moiset; Jacek T. Mika; Armagan Kocer; Pedro Salvador; Bert Poolman; Siewert J. Marrink; Durba Sengupta

The mechanism of action of antimicrobial peptides is, to our knowledge, still poorly understood. To probe the biophysical characteristics that confer activity, we present here a molecular-dynamics and biophysical study of a cyclic antimicrobial peptide and its inactive linear analog. In the simulations, the cyclic peptide caused large perturbations in the bilayer and cooperatively opened a disordered toroidal pore, 1-2 nm in diameter. Electrophysiology measurements confirm discrete poration events of comparable size. We also show that lysine residues aligning parallel to each other in the cyclic but not linear peptide are crucial for function. By employing dual-color fluorescence burst analysis, we show that both peptides are able to fuse/aggregate liposomes but only the cyclic peptide is able to porate them. The results provide detailed insight on the molecular basis of activity of cyclic antimicrobial peptides.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution.

Jan Peter Birkner; Berend Poolman; Armagan Kocer

Mechanosensitive (MS) ion channels are membrane proteins that detect and respond to membrane tension in all branches of life. In bacteria, MS channels prevent cells from lysing upon sudden hypoosmotic shock by opening and releasing solutes and water. Despite the importance of MS channels and ongoing efforts to explain their functioning, the molecular mechanism of MS channel gating remains elusive and controversial. Here we report a method that allows single-subunit resolution for manipulating and monitoring “mechanosensitive channel of large conductance” from Escherichia coli. We gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time. Our experimental results suggest that both channel opening and closing are initiated by the transmembrane 1 helix of a single subunit and that the participation of each of the five identical subunits in the structural transitions between the closed and open states is asymmetrical. Such a minimal change in the pore environment seems ideal for a fast and energy-efficient response to changes in the membrane tension.


Biosensors and Bioelectronics | 2012

Nanopore sensors: From hybrid to abiotic systems

Armagan Kocer; Lara Tauk; Philippe Déjardin

The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is provided to works relative to a single nanopore sensor. The different strategies to combine the robustness of supports with the high selectivity of the biological channels are reviewed. The scope ranges from keeping the membrane natural environment of biological channels in supported and suspended bilayer membranes, to considering completely abiotic designed nanopores created through synthetic materials. The α-hemolysine channel and the mechanosensitive channel of large conductance with their modifications are especially considered in the first strategy, the conical functionalized nanopores created in polymer foils in the second one. The different attempts of reading macromolecules are also discussed. A third hybrid strategy, which was not extensively explored, consists in the inclusion of a biological structure into a well-designed nanopore through the support, as recently with gramicidin.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry

Albert Konijnenberg; Duygu Yilmaz; Helgi I. Ingólfsson; Anna Dimitrova; Siewert J. Marrink; Zhuolun Li; Catherine Venien-Bryan; Frank Sobott; Armagan Kocer

Significance Understanding the working mechanism of membrane proteins is difficult even when crystal structures are available. One promising approach is ion mobility–mass spectrometry (IM-MS) that detects not only the mass-to-charge ratio but also the area of proteins by measuring the rotationally averaged collision cross-sections (CCS) in the gas phase. We identified detergents that allow the release of membrane proteins at low levels of collisional activation for native MS, thus avoiding denaturing effects. We studied the gating mechanism of an ion channel, which occurs through large conformational changes. Ability to detect several coexisting states during gating with a change as small as 3% will open new avenues for studying dynamic structures of membrane proteins. Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility–mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.


The FASEB Journal | 2014

The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension-induced gating

Nobina Mukherjee; Mac Donald F. Jose; Jan Peter Birkner; Martin Walko; Helgi I. Ingólfsson; Anna Dimitrova; Clement Arnarez; Siewert J. Marrink; Armagan Kocer

One of the best‐studied mechanosensitive channels is the mechanosensitive channel of large conductance (MscL). MscL senses tension in the membrane evoked by an osmotic down shock and directly couples it to large conformational changes leading to the opening of the channel. Spectroscopic techniques offer unique possibilities to monitor these conformational changes if it were possible to generate tension in the lipid bilayer, the native environment of MscL, during the measurements. To this end, asymmetric insertion of L‐α‐lysophosphatidylcholine (LPC) into the lipid bilayer has been effective; however, how LPC activates MscL is not fully understood. Here, the effects of LPC on tension‐sensitive mutants of a bacterial MscL and on MscL homologs with different tension sensitivities are reported, leading to the conclusion that the mode of action of LPC is different from that of applied tension. Our results imply that LPC shifts the free energy of gating by interfering with MscL‐membrane coupling. Furthermore, we demonstrate that the fine‐tuned addition of LPC can be used for controlled activation of MscL in spectroscopic studies.—Mukherjee, N., Jose, M. D., Birkner, J. P., Walko, M., Ingólfsson, H. I., Dimitrova, A., Arnarez, C., Marrink, S. J., Koçer, A., The activation mode of the mechanosensitive ion channel, MscL, by lysophosphatidylcholine differs from tension‐induced gating. FASEB J. 28, 4292–4302 (2014). www.fasebj.org


Accounts of Chemical Research | 2013

Bright Ion Channels and Lipid Bilayers

Wiktor Szymanski; Duygu Yilmaz; Armagan Kocer; Bernard Feringa

If we look at a simple organism such as a zebrafish under a microscope, we would see many cells working in harmony. If we zoomed in, we would observe each unit performing its own tasks in a special aqueous environment isolated from the other units by a lipid bilayer approximately 5 nm thick. These confined units are social: they communicate with one another by sensing and responding to the chemical changes in their environment through receptors and ion channels. These channels control the highly specific and selective passage of ions from one side of the cell to the other and are embedded in lipid bilayers. The movement of ions through ion channels supports excitation and electrical signaling in the nervous system. Ion channels have fascinated scientists not only because of their specificity and selectivity, but also for their functions, the serious consequences when they malfunction, and the other potential applications of these molecules. Light is a useful trigger to control and manipulate ion channels externally. With the many state-of-the-art optical technologies available, light offers a high degree of spatial and temporal control, millisecond precision, and noninvasive intervention and does not change the chemical environment of the system of interest. In this Account, we discuss research toward the dynamic control of lipid bilayer assembly and channel function, particularly the transport across the lipid bilayer-ion channel barrier of cells using light. We first summarize the manipulation of ion channel activity with light to modulate the channels natural activity. Based on the type of photoswitch employed, we can achieve novel functionalities with these channels, and control neural activity. Then we discuss the recent developments in light-induced transport through lipid bilayers. We focus on three different approaches: the incorporation of photoswitchable copolymers into the lipids, the doping of the lipid bilayer with photosensitive amphiphiles and the preparation of the lipid bilayers solely from photoswitchable lipids. These examples reflect the versatility of what we can achieve by manipulating biological systems with light, from triggering the permeability of a specific area of a lipid bilayer to controlling the behavior of a whole organism.


Journal of Liposome Research | 2007

A Remote Controlled Valve in Liposomes for Triggered Liposomal Release

Armagan Kocer

In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposomes response to its environment is achieved.


Nano Letters | 2014

Highly Parallel Transport Recordings on a Membrane-on-Nanopore Chip at Single Molecule Resolution

Michael Urban; Alexander Kleefen; Nobina Mukherjee; Patrick Seelheim; Barbara Windschiegl; Marc Vor der Brüggen; Armagan Kocer; Robert Tampé

Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250 000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.

Collaboration


Dive into the Armagan Kocer's collaboration.

Top Co-Authors

Avatar

Martin Walko

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Duygu Yilmaz

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge