Armand B. Cognetta
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Armand B. Cognetta.
Nature Methods | 2013
Jonathan J. Hulce; Armand B. Cognetta; Micah J. Niphakis; Sarah E. Tully; Benjamin F. Cravatt
Cholesterol is an essential structural component of cellular membranes and serves as a precursor for several classes of signaling molecules. Cholesterol exerts its effects and is, itself, regulated in large part by engagement in specific interactions with proteins. The full complement of sterol-binding proteins that exist in mammalian cells, however, remains unknown. Here we describe a chemoproteomic strategy that uses clickable, photoreactive sterol probes in combination with quantitative mass spectrometry to globally map cholesterol-protein interactions directly in living cells. We identified over 250 cholesterol-binding proteins, including receptors, channels and enzymes involved in many established and previously unreported interactions. Prominent among the newly identified interacting proteins were enzymes that regulate sugars, glycerolipids and cholesterol itself as well as proteins involved in vesicular transport and protein glycosylation and degradation, pointing to key nodes in biochemical pathways that may couple sterol concentrations to the control of other metabolites and protein localization and modification.
Chemistry & Biology | 2012
Jae Won Chang; Micah J. Niphakis; Kenneth M. Lum; Armand B. Cognetta; Chu Wang; Megan L. Matthews; Sherry Niessen; Matthew W. Buczynski; Loren H. Parsons; Benjamin F. Cravatt
The endocannabinoids 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamine (anandamide) are principally degraded by monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. The recent discovery of O-aryl carbamates such as JZL184 as selective MAGL inhibitors has enabled functional investigation of 2-AG signaling pathways in vivo. Nonetheless, JZL184 and other reported MAGL inhibitors still display low-level cross-reactivity with FAAH and peripheral carboxylesterases, which can complicate their use in certain biological studies. Here, we report a distinct class of O-hexafluoroisopropyl (HFIP) carbamates that inhibits MAGL in vitro and in vivo with excellent potency and greatly improved selectivity, including showing no detectable cross-reactivity with FAAH. These findings designate HFIP carbamates as a versatile chemotype for inhibiting MAGL and should encourage the pursuit of other serine hydrolase inhibitors that bear reactive groups resembling the structures of natural substrates.
Cell | 2015
Micah J. Niphakis; Kenneth M. Lum; Armand B. Cognetta; Bruno E. Correia; Taka-Aki Ichu; Jose Olucha; Steven J. Brown; Soumajit Kundu; Fabiana Piscitelli; Hugh Rosen; Benjamin F. Cravatt
Lipids play central roles in physiology and disease, where their structural, metabolic, and signaling functions often arise from interactions with proteins. Here, we describe a set of lipid-based chemical proteomic probes and their global interaction map in mammalian cells. These interactions involve hundreds of proteins from diverse functional classes and frequently occur at sites of drug action. We determine the target profiles for several drugs across the lipid-interaction proteome, revealing that its ligandable content extends far beyond traditionally defined categories of druggable proteins. In further support of this finding, we describe a selective ligand for the lipid-binding protein nucleobindin-1 (NUCB1) and show that this compound perturbs the hydrolytic and oxidative metabolism of endocannabinoids in cells. The described chemical proteomic platform thus provides an integrated path to both discover and pharmacologically characterize a wide range of proteins that participate in lipid pathways in cells.
ACS Chemical Biology | 2013
Jae Won Chang; Armand B. Cognetta; Micah J. Niphakis; Benjamin F. Cravatt
Serine hydrolases are one of the largest and most diverse enzyme classes in Nature. Inhibitors of serine hydrolases are used to treat many diseases, including obesity, diabetes, cognitive dementia, and bacterial and viral infections. Nonetheless, the majority of the 200+ serine hydrolases in mammals still lack selective inhibitors for their functional characterization. We and others have shown that activated carbamates, through covalent reaction with the conserved serine nucleophile of serine hydrolases, can serve as useful inhibitors for members of this enzyme family. The extent to which carbamates, however, cross-react with other protein classes remains mostly unexplored. Here, we address this problem by investigating the proteome-wide reactivity of a diverse set of activated carbamates in vitro and in vivo, using a combination of competitive and click chemistry (CC)-activity-based protein profiling (ABPP). We identify multiple classes of carbamates, including O-aryl, O-hexafluoroisopropyl (HFIP), and O-N-hydroxysuccinimidyl (NHS) carbamates that react selectively with serine hydrolases across entire mouse tissue proteomes in vivo. We exploit the proteome-wide specificity of HFIP carbamates to create in situ imaging probes for the endocannabinoid hydrolases monoacylglycerol lipase (MAGL) and α-β hydrolase-6 (ABHD6). These findings, taken together, designate the carbamate as a privileged reactive group for serine hydrolases that can accommodate diverse structural modifications to produce inhibitors that display exceptional potency and selectivity across the mammalian proteome.
ACS Chemical Neuroscience | 2013
Micah J. Niphakis; Armand B. Cognetta; Jae Won Chang; Matthew W. Buczynski; Loren H. Parsons; Frederika Maria Byrne; James J. Burston; Victoria Chapman; Benjamin F. Cravatt
Monoacylglycerol lipase (MAGL) is a principal metabolic enzyme responsible for hydrolyzing the endogenous cannabinoid (endocannabinoid) 2-arachidonoylglycerol (2-AG). Selective inhibitors of MAGL offer valuable probes to further understand the enzymes function in biological systems and may lead to drugs for treating a variety of diseases, including psychiatric disorders, neuroinflammation, and pain. N-Hydroxysuccinimidyl (NHS) carbamates have recently been identified as a promising class of serine hydrolase inhibitors that shows minimal cross-reactivity with other proteins in the proteome. Here, we explore NHS carbamates more broadly and demonstrate their potential as inhibitors of endocannabinoid hydrolases and additional enzymes from the serine hydrolase class. We extensively characterize an NHS carbamate 1a (MJN110) as a potent, selective, and in-vivo-active MAGL inhibitor. Finally, we demonstrate that MJN110 alleviates mechanical allodynia in a rat model of diabetic neuropathy, marking NHS carbamates as a promising class of MAGL inhibitors.
Science | 2017
Annelot C. M. van Esbroeck; Antonius P. A. Janssen; Armand B. Cognetta; Daisuke Ogasawara; Guy Shpak; Mark van der Kroeg; Vasudev Kantae; Marc P. Baggelaar; Femke M.S. de Vrij; Hui Deng; Marco Allarà; Filomena Fezza; Zhanmin Lin; Tom van der Wel; Marjolein Soethoudt; Elliot D. Mock; Hans den Dulk; Ilse L. Baak; Bogdan I. Florea; Giel Hendriks; Luciano De Petrocellis; Herman S. Overkleeft; Thomas Hankemeier; Chris I. De Zeeuw; Vincenzo Di Marzo; Mauro Maccarrone; Benjamin F. Cravatt; Steven A. Kushner; Mario van der Stelt
A clue to a drugs neurotoxicity? The drug BIA 10-2474 inhibits fatty acid amide hydrolase (FAAH), a lipase that degrades a specific endocannabinoid. On the basis of this activity, BIA 10-2474 was being developed as a potential treatment for anxiety and pain. In a phase 1 trial of the drug, one subject died, and four others suffered brain damage. As an initial step in investigating whether inhibition of off-target proteins by BIA 10-2474 might contribute to its clinical neurotoxicity, van Esbroeck et al. used activity-based proteomic assays to identify proteins targeted by the drug. Studying human cells and brain samples from subjects not associated with the trial, they found that BIA 10-2474 targeted several different lipases in addition to FAAH. It also substantially altered lipid metabolism in cultured neurons. Science, this issue p. 1084 A drug that was unexpectedly neurotoxic in a clinical trial has off-target activities in chemical proteomic assays. A recent phase 1 trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10-2474 led to the death of one volunteer and produced mild-to-severe neurological symptoms in four others. Although the cause of the clinical neurotoxicity is unknown, it has been postulated, given the clinical safety profile of other tested FAAH inhibitors, that off-target activities of BIA 10-2474 may have played a role. Here we use activity-based proteomic methods to determine the protein interaction landscape of BIA 10-2474 in human cells and tissues. This analysis revealed that the drug inhibits several lipases that are not targeted by PF04457845, a highly selective and clinically tested FAAH inhibitor. BIA 10-2474, but not PF04457845, produced substantial alterations in lipid networks in human cortical neurons, suggesting that promiscuous lipase inhibitors have the potential to cause metabolic dysregulation in the nervous system.
Journal of the American Chemical Society | 2014
Neil J. Lajkiewicz; Armand B. Cognetta; Micah J. Niphakis; Benjamin F. Cravatt; John A. Jr. Porco
Flavaglines are a class of natural products with potent insecticidal and anticancer activities. β-Lactones are a privileged structural motif found in both therapeutic agents and chemical probes. Herein, we report the synthesis, unexpected light-driven di-epimerization, and activity-based protein profiling of a novel rocaglate-derived β-lactone. In addition to in vitro inhibition of the serine hydrolases ABHD10 and ACOT1/2, the most potent β-lactone enantiomer was also found to inhibit these enzymes, as well as the serine peptidases CTSA and SCPEP1, in PC3 cells.
Chemistry & Biology | 2015
Armand B. Cognetta; Micah J. Niphakis; Hyeon-Cheol Lee; Michael Martini; Jonathan J. Hulce; Benjamin F. Cravatt
Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis of a small library of NHH carbamates and screening by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterase 1, mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis.
Nature Chemical Biology | 2016
William H. Parsons; Matthew J. Kolar; Siddhesh S. Kamat; Armand B. Cognetta; Jonathan J. Hulce; Enrique Saez; Barbara B. Kahn; Alan Saghatelian; Benjamin F. Cravatt
Enzyme classes may contain outlier members that share mechanistic, but not sequence or structural relatedness with more common representatives. The functional annotation of such exceptional proteins can be challenging. Here, we use activity-based profiling to discover that the poorly characterized multipass transmembrane proteins AIG1 and ADTRP are atypical hydrolytic enzymes that depend on conserved threonine and histidine residues for catalysis. Both AIG1 and ADTRP hydrolyze bioactive fatty-acid esters of hydroxy-fatty acids (FAHFAs), but not other major classes of lipids. We discover multiple cell-active, covalent inhibitors of AIG1 and show that these agents block FAHFA hydrolysis in mammalian cells. These results indicate that AIG1 and ADTRP are founding members of an evolutionarily conserved class of transmembrane threonine hydrolases involved in bioactive lipid metabolism. More generally, our findings demonstrate how chemical proteomics can excavate potential cases of convergent/parallel protein evolution that defy conventional sequence- and structure-based predictions.
Nature Communications | 2017
Joanne Tan; Armand B. Cognetta; Diego B. Diaz; Kenneth M. Lum; Shinya Adachi; Soumajit Kundu; Benjamin F. Cravatt; Andrei K. Yudin
Heteroatom-rich organoboron compounds have attracted attention as modulators of enzyme function. Driven by the unmet need to develop chemoselective access to boron chemotypes, we report herein the synthesis of α- and β-aminocyano(MIDA)boronates from borylated carbonyl compounds. Activity-based protein profiling of the resulting β-aminoboronic acids furnishes selective and cell-active inhibitors of the (ox)lipid-metabolizing enzyme α/β-hydrolase domain 3 (ABHD3). The most potent compound displays nanomolar in vitro and in situ IC50 values and fully inhibits ABHD3 activity in human cells with no detectable cross-reactivity against other serine hydrolases. These findings demonstrate that synthetic methods that enhance the heteroatom diversity of boron-containing molecules within a limited set of scaffolds accelerate the discovery of chemical probes of human enzymes.Heteroatom-rich organoboron compounds are promising modulators of enzyme activity. Here, the authors report a library of aminocyanoboronates as serine hydrolases inhibitors with the most potent compound showing in vivo and in vitro nanomolar activity and high selectivity towards human ABHD3 hydrolase.