Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armando Viviano Razionale is active.

Publication


Featured researches published by Armando Viviano Razionale.


BMC Medical Imaging | 2011

Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

Gianni Frisardi; Giacomo Innocenzo Chessa; Sandro Barone; Alessandro Paoli; Armando Viviano Razionale; Flavio Frisardi

BackgroundA precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides.MethodsIn this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes.ResultsA clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates.ConclusionsThe use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology.


machine vision applications | 2012

Three-dimensional point cloud alignment detecting fiducial markers by structured light stereo imaging

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

In recent years, various methodologies of shape reconstruction have been proposed with the aim at creating Computer-Aided Design models by digitising physical objects using optical sensors. Generally, the acquisition of 3D geometrical data includes crucial tasks, such as planning scanning strategies and aligning different point clouds by multiple view approaches, which differ for user’s interaction and hardware cost. This paper describes a methodology to automatically measure three-dimensional coordinates of fiducial markers to be used as references to align point clouds obtained by an active stereo vision system based on structured light projection. Intensity-based algorithms and stereo vision principles are combined to detect passive fiducial markers localised in a scene. 3D markers are uniquely recognised on the basis of geometrical similarities. The correlation between fiducial markers and point clouds allows the digital creation of complete object surfaces. The technology has been validated by experimental tests based on nominal benchmarks and reconstructions of target objects with complex shapes.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2013

Computer-aided modelling of three-dimensional maxillofacial tissues through multi-modal imaging.

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

Recent developments in digital imaging techniques have allowed a wide spread of three-dimensional methodologies based on capturing anatomical tissues by different approaches, such as cone-beam computed tomography, three-dimensional photography and surface scanning. In oral rehabilitation, an objective method to predict surgical and orthodontic outcomes should be based on anatomical data belonging to soft facial tissue, facial skeleton and dentition (maxillofacial triad). However, none of the available imaging techniques can accurately capture the complete triad. This article presents a multi-modal framework, which allows image fusion of different digital techniques to create a three-dimensional virtual maxillofacial model, which integrates photorealistic face, facial skeleton and dentition. The methodology is based on combining structured light surface scanning and cone-beam computed tomography data processing. The fusion procedure provides multi-modal representations by aligning different tissues on the basis of common anatomical constraints.


Sensors | 2012

3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface.


International Journal for Numerical Methods in Biomedical Engineering | 2016

CT segmentation of dental shapes by anatomy‐driven reformation imaging and B‐spline modelling

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

Dedicated imaging methods are among the most important tools of modern computer-aided medical applications. In the last few years, cone beam computed tomography (CBCT) has gained popularity in digital dentistry for 3D imaging of jawbones and teeth. However, the anatomy of a maxillofacial region complicates the assessment of tooth geometry and anatomical location when using standard orthogonal views of the CT data set. In particular, a tooth is defined by a sub-region, which cannot be easily separated from surrounding tissues by only considering pixel grey-intensity values. For this reason, an image enhancement is usually necessary in order to properly segment tooth geometries. In this paper, an anatomy-driven methodology to reconstruct individual 3D tooth anatomies by processing CBCT data is presented. The main concept is to generate a small set of multi-planar reformation images along significant views for each target tooth, driven by the individual anatomical geometry of a specific patient. The reformation images greatly enhance the clearness of the target tooth contours. A set of meaningful 2D tooth contours is extracted and used to automatically model the overall 3D tooth shape through a B-spline representation. The effectiveness of the methodology has been verified by comparing some anatomy-driven reconstructions of anterior and premolar teeth with those obtained by using standard tooth segmentation tools. Copyright


Sensors | 2013

A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.


electronic imaging | 2007

Active and passive sensors for art works analysis and investigations

Anna Pelagotti; Andrea Del Mastio; Armando Viviano Razionale

In this contribution we describe the modern 2D and 3D technologies for the documentation, analysis and restoration of paintings. RGB color imaging, IR and UV fluorescence sensors, together with highly precise active sensors are among the most widely technologies in this field. The devices provide information on the paintings materials, on the employed technique and on the conservations state of the art work. However, all information must be correctly registered to be able to draw safe conclusions and perform the most adequate conservation interventions. We also present a complete example where multispectral visible images, IR reflectography, UV fluorescence and 3D data are acquired and then combined, showing how the integration gives a new and significant improvement in the analysis of painting.


Head & Face Medicine | 2012

Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis

Gianni Frisardi; Sandro Barone; Armando Viviano Razionale; Alessandro Paoli; Flavio Frisardi; Antonio Tullio; Aurea Maria Immacolata Lumbau; Giacomo Innocenzo Chessa

BackgroundA fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry.MethodsIn this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA = 2.8 mm, DB = 3.3 mm, and DC = 3.8 mm) with depth L = 12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L = 11 mm and diameter D = 4 mm.ResultsThe maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ = 2.46, 0.51 and 0.49 for the three models, respectively.ConclusionsThis study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique.Further studies could aim at understanding how different drill shapes can determine the optimal press-fit condition with an equally distributed preload on both the cortical and trabecular structure around the implant.


Computerized Medical Imaging and Graphics | 2015

Geometrical modeling of complete dental shapes by using panoramic X- ray, digital mouth data and anatomical templates

Sandro Barone; Alessandro Paoli; Armando Viviano Razionale

In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates.


virtual systems and multimedia | 2012

A CAD-based methodology for dental implant surgery

Alessandro Paoli; Armando Viviano Razionale

In the field of oral rehabilitation, innovative methodologies based on the combined use of 3D imaging technologies and computer-guided approaches, have been developed with the aim at defining reliable tools for the virtual preoperative assessment of implant placement. The accurate and reliable transfer of the virtual planning into the surgical field represents the main challenge for modern implantology. This paper aims at defining and verifying the clinical applicability of an innovative CAD/CAM framework for the accurate planning of dental implant surgeries based on the integration of Computed Tomography (CT) and surface optical scanning. The higher accuracy and resolution of optical scanning allows a more accurate reconstruction of dentition structures and mouth soft tissues, thus guaranteeing a better fitting of the designed prosthetic structures with respect to the patient oral cavity.

Collaboration


Dive into the Armando Viviano Razionale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge