Armel Salmon
University of Rennes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Armel Salmon.
New Phytologist | 2009
Christian Parisod; Armel Salmon; Tatiana Zerjal; Maud Tenaillon; Marie-Angèle Grandbastien; Malika Ainouche
*Transposable elements (TE) induce structural and epigenetic alterations in their host genome, with major evolutionary implications. These alterations are examined here in the context of allopolyploid speciation, on the recently formed invasive species Spartina anglica, which represents an excellent model to contrast plant genome dynamics following hybridization and genome doubling in natural conditions. *Methyl-sensitive transposon display was used to investigate the structural and epigenetic dynamics of TE insertion sites for several elements, and to contrast it with comparable genome-wide methyl-sensitive amplified polymorphism analyses. *While no transposition burst was detected, we found evidence of major structural and CpG methylation changes in the vicinity of TE insertions accompanying hybridization, and to a lesser extent, genome doubling. Genomic alteration appeared preferentially in the maternal subgenome, and the environment of TEs was specifically affected by large maternal-specific methylation changes, demonstrating that TEs fuel epigenetic alterations at the merging of diverged genomes. *Such genome changes indicate that nuclear incompatibilities in Spartina trigger immediate alterations, which are TE-specific with an important epigenetic component. Since most of this reorganization is conserved after genome doubling that produced a fertile invasive species, TEs certainly play a central role in the shock-induced dynamics of the genome during allopolyploid speciation.
American Journal of Botany | 2012
Corrinne E. Grover; Armel Salmon; Jonathan F. Wendel
Next-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available.
Heredity | 2013
J Ferreira de Carvalho; Julie Poulain; C Da Silva; Patrick Wincker; Sophie Michon-Coudouel; Alexandra Dheilly; Delphine Naquin; Julien Boutte; Armel Salmon; Malika Ainouche
Spartina species have a critical ecological role in salt marshes and represent an excellent system to investigate recurrent polyploid speciation. Using the 454 GS-FLX pyrosequencer, we assembled and annotated the first reference transcriptome (from roots and leaves) for two related hexaploid Spartina species that hybridize in Western Europe, the East American invasive Spartina alterniflora and the Euro-African S. maritima. The de novo read assembly generated 38 478 consensus sequences and 99% found an annotation using Poaceae databases, representing a total of 16 753 non-redundant genes. Spartina expressed sequence tags were mapped onto the Sorghum bicolor genome, where they were distributed among the subtelomeric arms of the 10 S. bicolor chromosomes, with high gene density correlation. Normalization of the complementary DNA library improved the number of annotated genes. Ecologically relevant genes were identified among GO biological function categories in salt and heavy metal stress response, C4 photosynthesis and in lignin and cellulose metabolism. Expression of some of these genes had been found to be altered by hybridization and genome duplication in a previous microarray-based study in Spartina. As these species are hexaploid, up to three duplicated homoeologs may be expected per locus. When analyzing sequence polymorphism at four different loci in S. maritima and S. alterniflora, we found up to four haplotypes per locus, suggesting the presence of two expressed homoeologous sequences with one or two allelic variants each. This reference transcriptome will allow analysis of specific Spartina genes of ecological or evolutionary interest, estimation of homoeologous gene expression variation using RNA-seq and further gene expression evolution analyses in natural populations.
Molecular Phylogenetics and Evolution | 2015
Mathieu Rousseau-Gueutin; Sidonie Bellot; Guillaume Martin; Julien Boutte; Houda Chelaifa; Oscar Lima; Sophie Michon-Coudouel; Delphine Naquin; Armel Salmon; Kader Ainouche; Malika Ainouche
The history of many plant lineages is complicated by reticulate evolution with cases of hybridization often followed by genome duplication (allopolyploidy). In such a context, the inference of phylogenetic relationships and biogeographic scenarios based on molecular data is easier using haploid markers like chloroplast genome sequences. Hybridization and polyploidization occurred recurrently in the genus Spartina (Poaceae, Chloridoideae), as illustrated by the recent formation of the invasive allododecaploid S. anglica during the 19th century in Europe. Until now, only a few plastid markers were available to explore the history of this genus and their low variability limited the resolution of species relationships. We sequenced the complete chloroplast genome (plastome) of S. maritima, the native European parent of S. anglica, and compared it to the plastomes of other Poaceae. Our analysis revealed the presence of fast-evolving regions of potential taxonomic, phylogeographic and phylogenetic utility at various levels within the Poaceae family. Using secondary calibrations, we show that the tetraploid and hexaploid lineages of Spartina diverged 6-10 my ago, and that the two parents of the invasive allopolyploid S. anglica separated 2-4 my ago via long distance dispersal of the ancestor of S. maritima over the Atlantic Ocean. Finally, we discuss the meaning of divergence times between chloroplast genomes in the context of reticulate evolution.
G3: Genes, Genomes, Genetics | 2016
Julien Boutte; Benoit Aliaga; Oscar Lima; Julie Ferreira De Carvalho; Abdelkader Aïnouche; Jiri Macas; Mathieu Rousseau-Gueutin; Olivier Coriton; Malika Ainouche; Armel Salmon
Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5′-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies.
DNA Research | 2017
Jean Keller; Mathieu Rousseau-Gueutin; Guillaume Martin; Jérôme Morice; Julien Boutte; E. Coissac; Malika Ourari; Malika Ainouche; Armel Salmon; Francisco Cabello-Hurtado; Abdelkader Aïnouche
Abstract The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Genome Biology and Evolution | 2016
Julien Boutte; Julie Ferreira De Carvalho; Mathieu Rousseau-Gueutin; Julie Poulain; Corinne Da Silva; Patrick Wincker; Malika Ainouche; Armel Salmon
Abstract In this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S. x townsendii and S. x neyrautii) and the allododecaploid invasive species S. anglica. These transcriptomes were constructed from various leaf and root cDNA libraries that were sequenced using both Roche-454 and Illumina technologies. Considering the high ploidy levels of the Spartina genomes under study, and considering the absence of diploid reference genome and the need of an appropriate analytical strategy, we developed generic bioinformatics tools to (1) detect different haplotypes of each gene within each species and (2) assign a parental origin to haplotypes detected in the hexaploid hybrids and the neo-allopolyploid. The approach described here allows the detection of putative homeologs from sets of short reads. Synonymous substitution rate (KS) comparisons between haplotypes from the hexaploid species revealed the presence of one KS peak (likely resulting from the tetraploid duplication event). The procedure developed in this study can be applied for future differential gene expression or genomics experiments to study the fate of duplicated genes in the invasive allododecaploid S. anglica.
Methods of Molecular Biology | 2014
Christian Parisod; Armel Salmon; Malika Ainouche; Marie-Angèle Grandbastien
Transposable elements (TE) represent a major fraction of eukaryotic genomes and play many roles in plant epigenetics. In this chapter, we describe the use of Sequence-Specific Amplified Polymorphism (SSAP) as a reliable Transposon Display technique applicable for use in many plant species. We also discuss the interpretation of SSAP data and associated risks. This technique has potential to allow rapid screening of plant populations, especially in nonmodel or wild species.
bioRxiv | 2018
Mariano Alvarez; Marta Robertson; Thomas P. van Gurp; Niels Wagemaker; Delphine Giraud; Malika Ainouche; Armel Salmon; Koen J. F. Verhoeven; Christina L. Richards
The application of genomics technology in ecological contexts allows for examination of how rapid environmental change may shape standing molecular level variation and organismal response. We previously demonstrated an effect of oil pollution on gene expression patterns and genetic variation, but not methylation variation, in oil-exposed populations of the foundation salt marsh grass, Spartina alterniflora. Here, we used a reduced representation bisulfite sequencing approach, epigenotyping by sequencing (epiGBS), to examine relationships among DNA sequence, DNA methylation, gene expression, and exposure to oil pollution. With the increased resolution of epiGBS, we document genetic and methylation differentiation between oil-exposed and unexposed populations, and a correlation of genome-wide methylation patterns and gene expression, independent of population genetic structure. Overall, these findings demonstrate that variation in DNA methylation is abundant, responsive, and correlated to gene expression in natural populations, and may represent an important component of the response to environmental stress.
Plant Science | 2018
J. Keller; Juan Imperial; Tomás Ruiz-Argüeso; K. Privet; O. Lima; S. Michon-Coudouel; M. Biget; Armel Salmon; Abdelkader Aïnouche; Francisco Cabello-Hurtado
Nitrogen fixation in the legume root-nodule symbiosis has a critical importance in natural and agricultural ecosystems and depends on the proper choice of the symbiotic partners. However, the genetic determinism of symbiotic specificity remains unclear. To study this process, we inoculated three Lupinus species (L. albus, L. luteus, L. mariae-josephae), belonging to the under-investigated tribe of Genistoids, with two Bradyrhizobium strains (B. japonicum, B. valentinum) presenting contrasted degrees of symbiotic specificity depending on the host. We produced the first transcriptomes (RNA-Seq) from lupine nodules in a context of symbiotic specificity. For each lupine species, we compared gene expression between functional and non-functional interactions and determined differentially expressed (DE) genes. This revealed that L. luteus and L. mariae-josephae (nodulated by only one of the Bradyrhizobium strains) specific nodulomes were richest in DE genes than L. albus (nodulation with both microsymbionts, but non-functional with B. valentinum) and share a higher number of these genes between them than with L. albus. In addition, a functional analysis of DE genes highlighted the central role of the genetic pathways controlling infection and nodule organogenesis, hormones, secondary, carbon and nitrogen metabolisms, as well as the implication of plant defence in response to compatible or incompatible Bradyrhizobium strains.
Collaboration
Dive into the Armel Salmon's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputs