Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armelle Ansart is active.

Publication


Featured researches published by Armelle Ansart.


Acta Oecologica-international Journal of Ecology | 2003

Cold hardiness in molluscs

Armelle Ansart; Philippe Vernon

Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.


Journal of Animal Ecology | 2015

Movement propensity and ability correlate with ecological specialization in European land snails: comparative analysis of a dispersal syndrome

Maxime Dahirel; Eric Olivier; Annie Guiller; Marie-Claire Martin; Luc Madec; Armelle Ansart

Intra- and interspecific differences in movement behaviour play an important role in the ecology and evolution of animals, particularly in fragmented landscapes. As a consequence of rarer and generally more fragmented habitat, and because dispersal tends to disrupt benefits brought by local adaptation, theory predicts that mobility and dispersal should be counter-selected in specialists. Using experimental data and phylogenetic comparative tools, we analysed movement propensity and capacity, as well as dispersal-related phenotypic traits, in controlled conditions in 20 species of European land snails from the Helicoidea superfamily. Costs of movement in terrestrial gastropods are among the highest in animals, which make them a potentially powerful model to test these predictions. Habitat specialists were indeed less likely to cross a boundary between a familiar and an unfamiliar substrate than generalists. They also had smaller feet, after accounting for size. Furthermore, exploring specialists were slower than generalists and had more tortuous trajectories, leading them to stay closer to the familiar patch. Movement traits were generally evolutionary labile, but some were constrained by body size, a phylogenetically conserved trait. High specialization and low-dispersal ability are two traits often considered to increase species vulnerability to fragmentation, climate changes and extinction. This study confirms they should not be considered separately, due to their integration in a dispersal syndrome. Therefore, specialist species face double penalty under habitat loss and other environmental changes, making them more vulnerable to extinction and contributing to the biotic homogenization of communities.


Bioelectromagnetics | 2009

Study of narrow band millimeter-wave potential interactions with endoplasmic reticulum stress sensor genes.

Christophe Nicolas Nicolaz; M. Zhadobov; Fabienne Desmots; Armelle Ansart; Ronan Sauleau; Daniel Thouroude; Denis Michel; Yves Le Dréan

The main purpose of this article is to study potential biological effects of low-power millimeter waves (MMWs) on endoplasmic reticulum (ER), an organelle sensitive to a wide variety of environmental insults and involved in a number of pathologies. We considered exposure frequencies around 60 GHz in the context of their near-future applications in wireless communication systems. Radiations within this frequency range are strongly absorbed by oxygen molecules, and biological species have never been exposed to such radiations in natural environmental conditions. A set of five discrete frequencies has been selected; three of them coincide with oxygen spectral lines (59.16, 60.43, and 61.15 GHz) and two frequencies correspond to the spectral line overlap regions (59.87 and 60.83 GHz). Moreover, we used a microwave spectroscopy approach to select eight frequencies corresponding to the spectral lines of various molecular groups within 59-61 GHz frequency range. The human glial cell line, U-251 MG, was exposed or sham-exposed for 24 h with a peak incident power density of 0.14 mW/cm(2). The average specific absorption rate (SAR) within the cell monolayer ranges from 2.64 +/- 0.08 to 3.3 +/- 0.1 W/kg depending on the location of the exposed well. We analyzed by quantitative reverse transcription-polymerase chain reaction (RT-PCR) the level of expression of two endogenous ER-stress biomarkers, namely, the chaperones BiP/GRP78 and ORP150/GRP170. It was found that exposure to low-power MMW does not significantly modify the mRNA levels of these stress-sensitive genes suggesting that ER homeostasis is not altered by low-power MMW at the considered frequencies.


Evolutionary Ecology | 2014

Is cold hardiness size-constrained? A comparative approach in land snails

Armelle Ansart; Annie Guiller; Olivier Moine; Marie-Claire Martin; Luc Madec

Body water is a major element of the cold-hardiness strategies observed in ectothermic animals, in particular in freezing avoidant species for which body ice formation is lethal. Here, we investigate the relationships, in terrestrial snails, between the temperature of crystallisation (Tc) and body water (water mass and water content), shell shape, geographic and climatic distribution, taking into account phylogenetic inertia. Phylogenetic relationships among 31 species from 13 different families of terrestrial Gastropods were studied using 28S rRNA nuclear and COI mitochondrial sequence data, together with species-specific traits. Our results provide evidence for clear relationships between Tc and absolute/relative body water: smaller species with lower water content tended to be characterized by colder temperatures of crystallisation, although some exceptions were noticeable. Environmental conditions do not appear to affect Tc significantly, as well as shell shape which is however correlated with water content. This study confirmed that supercooling ability in land snails is size-constrained, with consequences on cold-hardiness strategies.


Cryobiology | 2002

The effect of antibiotic treatment on the supercooling ability of the land snail Helix aspersa (Gastropoda: Pulmonata)

Armelle Ansart; Philippe Vernon; Maryvonne Charrier; Jacques Daguzan

The land snail Helix aspersa is a partially freezing tolerant species whose supercooling ability is limited to ca. -3 to -5 degrees C. One hundred adult snails were subjected to the following two experimental conditions: (i) a starved group, provided with water; (ii) an antibiotic-treated group that was provided with a solution containing a mixture of two antibiotics. The antibiotic group exhibited a T(c) significantly lower than the starved group (-3.94 +/- 1.32 degrees C, n = 40 and -3.07 +/- 0.99, n = 30, t test, p < 0.005). This study showed that bacteria of the gut are likely to elevate animal supercooling points. It is also the first report in which a possible ice-nucleating activity of the gut microflora in a land snail has been suggested by the action of antibiotics on the T(c).


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2008

Influence of temperature acclimation and gut content on the supercooling ability of the land snail Cornu aspersum.

Armelle Ansart; Pierre-Aymeric Aulne; Luc Madec; Philippe Vernon

The invasive land snail Cornu aspersum possesses a low ability to supercool (c. -5 degrees C in winter) and survives only minimal ice formation in its body fluids, what may limit its expansion to colder environments. In the present study, we investigated the influence of acclimation and starvation on its supercooling ability. During eight weeks, individuals were maintained at 20 degrees C, fed or starved, or placed at 5 degrees C, directly or with progressive acclimation to cold and shorter photoperiod. Temperature of crystallisation of whole individual (Tc(I)) and hemolymph (Tc(H)), mass data and gut content were recorded every two weeks. Hemolymphatic glucose and glycerol were measured at the end of experiment and occurrence of intestinal ice-nucleating agents (INA) was researched. Acclimation had no effect on Tc(I) but stimulated purging of the gut. Starvation induced a slight decrease of Tc(I) whereas a high quantity of alimentary particles in the digestive tract limited the supercooling ability. Glucose and glycerol were not synthesized in cold conditions. Mean Tc(H) was low (c. -17 degrees C), some INA being present in hemolymph of fed animals. Intestinal content of starved individuals exhibited a mean Tc of c. -6 degrees C, decreasing to c. -12 degrees after heating, suggesting the presence of organic INA.


Oecologia | 2016

Density-dependence across dispersal stages in a hermaphrodite land snail: insights from discrete choice models

Maxime Dahirel; Michalis Vardakis; Armelle Ansart; Luc Madec

Dispersal movements, i.e. movements leading to gene flow, are key behaviours with important, but only partially understood, consequences for the dynamics and evolution of populations. In particular, density-dependent dispersal has been widely described, yet how it is determined by the interaction with individual traits, and whether density effects differ between the three steps of dispersal (departure, transience, and settlement), remains largely unknown. Using a semi-natural landscape, we studied dispersal choices of Cornu aspersum land snails, a species in which negative effects of crowding are well documented, and analysed them using dispersal discrete choice models, a new method allowing the analysis of dispersal decisions by explicitly considering the characteristics of all available alternatives and their interaction with individual traits. Subadults were more dispersive than adults, confirming existing results. In addition, departure and settlement were both density dependent: snails avoided crowded patches at both ends of the dispersal process, and subadults were more reluctant to settle into crowded patches than adults. Moreover, we found support for carry-over effects of release density on subsequent settlement decisions: snails from crowded contexts were more sensitive to density in their subsequent immigration choices. The fact that settlement decisions were informed indicates that costs of prospecting are not as important as previously thought in snails, and/or that snails use alternative ways to collect information, such as indirect social information (e.g. trail following). The observed density-dependent dispersal dynamics may play an important role in the ability of C. aspersum to successfully colonise frequently human-disturbed habitats around the world.


Malacologia | 2016

Inter-Population Differences and Seasonal Dynamic of the Bacterial Gut Community in the Endangered Land Snail Helix pomatia (Gastropoda: Helicidae)

Annegret Nicolai; Corinne Rouland-Lefèvre; Armelle Ansart; Juliane Filser; Roman Lenz; Anne Pando; Maryvonne Charrier

ABSTRACT Among the multifaceted environmental factors, the bacterial community ingested with soil and food might play an important role in physiological processes of terrestrial gastropods, with consequences on population dynamics and species distribution patterns. Therefore, we investigated the bacterial gut community structure and seasonal dynamic in three populations of the protected endangered land snail Helix pomatia. The PCR-DGGE fingerprinting analysis followed by Nonmetric Multidimensional Scaling (NMDS) showed that Gamma-and Alphaproteobacteria were common to all populations, while Mollicutes and Betaproteobacteria were population specific. Allochthonous strains might be transiently abundant in the gut of foraging snails with respect to habitat conditions. Autochthonous strains were permanently present in the gut, even after expulsion of the gut content at hibernation beginning. Some of these permanent strains are known to have ice-nucleating activity, which is consistent with the limited cold hardiness in this species. Snails that did not enter hibernation despite being exposed to winter conditions had a poor bacterial community. In conclusion, the bacterial community structure differed between habitats and physiological states, and might be important for physiological processes and survival. Further studies should focus on the individual variation in bacterial community and investigate how it is affected by environmental changes.


bioRxiv | 2018

Dispersers are more likely to follow mucus trails in the land snail Cornu aspersum

Alexandre Vong; Armelle Ansart; Maxime Dahirel

Dispersal, i.e. movement leading to gene flow, is a fundamental although costly life history trait. The use of indirect social information may help mitigate these costs, yet in many cases little is known about the proximate sources of such information, and how dispersers and residents may differ in their information use. Land gastropods, which have a high cost of movement and obligatorily leave information potentially exploitable by conspecifics during movement (through mucus trails), are a good model to investigate links between dispersal costs and information use. We used Y-mazes to see whether dispersers and residents differed in their trail-following propensity, in the snail Cornu aspersum. Dispersers followed mucus trails more frequently than expected by chance, contrary to non-dispersers. Ignoring dispersal status during tests would lead to falsely conclude to no trail-following for the majority of ecologically realistic scenarios. Trail following by dispersers may reduce dispersal costs by reducing energy expenditure and helping snails find existing patches. Finally, we point that ignoring the potential for collective dispersal provided by trail-following abilities may lead to wrong inferences on the demographic and genetic consequences of dispersal.


Nature Ecology and Evolution | 2018

Bottom-up and top-down control of dispersal across major organismal groups

Emanuel A. Fronhofer; Delphine Legrand; Florian Altermatt; Armelle Ansart; Simon Blanchet; Dries Bonte; Alexis S. Chaine; Maxime Dahirel; Frederik De Laender; Jonathan De Raedt; Lucie Di Gesu; Staffan Jacob; Oliver Kaltz; Estelle Laurent; Chelsea J. Little; Luc Madec; Florent Manzi; Stefano Masier; Félix Pellerin; Frank Pennekamp; Nicolas Schtickzelle; Lieven Therry; Alexandre Vong; Laurane Winandy; Julien Cote

Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.In a coordinated distributed dispersal experiment involving seven laboratories, the authors show that both top-down predation risk and bottom-up resource limitation increase emigration rates across 21 species ranging from protozoa to vertebrates.

Collaboration


Dive into the Armelle Ansart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxime Dahirel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge