Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Armin Djamei is active.

Publication


Featured researches published by Armin Djamei.


Nature | 2011

Metabolic priming by a secreted fungal effector

Armin Djamei; Kerstin Schipper; Franziska Rabe; Anupama Ghosh; Volker Vincon; Jörg Kahnt; Sonia Osorio; Takayuki Tohge; Alisdair R. Fernie; Ivo Feussner; Kirstin Feussner; Peter Meinicke; York-Dieter Stierhof; Heinz Schwarz; Boris Macek; Matthias Mann; Regine Kahmann

Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.


Annual Review of Phytopathology | 2009

Ustilago maydis as a Pathogen

Thomas Brefort; Gunther Doehlemann; Artemio Mendoza-Mendoza; Stefanie Reissmann; Armin Djamei; Regine Kahmann

The Ustilago maydis-maize pathosystem has emerged as the current model for plant pathogenic basidiomycetes and as one of the few models for a true biotrophic interaction that persists throughout fungal development inside the host plant. This is based on the highly advanced genetic system for both the pathogen and its host, the ability to propagate U. maydis in axenic culture, and its unique capacity to induce prominent disease symptoms (tumors) on all aerial parts of maize within less than a week. The corn smut pathogen, though economically not threatening, will continue to serve as a model for related obligate biotrophic fungi such as the rusts, but also for closely related smut species that induce symptoms only in the flower organs of their hosts. In this review we describe the most prominent features of the U. maydis-maize pathosystem as well as genes and pathways most relevant to disease. We highlight recent developments that place this system at the forefront of understanding the function of secreted effectors in eukaryotic pathogens and describe the expected spin-offs for closely related species exploiting comparative genomics approaches.


The Plant Cell | 2007

The Arabidopsis Mitogen-Activated Protein Kinase Kinase MKK3 Is Upstream of Group C Mitogen-Activated Protein Kinases and Participates in Pathogen Signaling

Robert Doczi; Günter Brader; Aladár Pettkó-Szandtner; Iva Rajh; Armin Djamei; Andrea Pitzschke; Markus Teige; Heribert Hirt

Although the Arabidopsis thaliana genome contains genes encoding 20 mitogen-activated protein kinases (MAPKs) and 10 MAPK kinases (MAPKKs), most of them are still functionally uncharacterized. In this work, we analyzed the function of the group B MAPK kinase, MKK3. Transgenic ProMKK3:GUS lines showed basal expression in vascular tissues that was strongly induced by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000) infection but not by abiotic stresses. The growth of virulent Pst DC3000 was increased in mkk3 knockout plants and decreased in MKK3-overexpressing plants. Moreover, MKK3 overexpression lines showed increased expression of several PR genes. By yeast two-hybrid analysis, coimmunoprecipitation, and protein kinase assays, MKK3 was revealed to be an upstream activator of the group C MAPKs MPK1, MPK2, MPK7, and MPK14. Flagellin-derived flg22 peptide strongly activated MPK6 but resulted in poor activation of MPK7. By contrast, MPK6 and MPK7 were both activated by H2O2, but only MPK7 activation was enhanced by MKK3. In agreement with the notion that MKK3 regulates the expression of PR genes, ProPR1:GUS expression was strongly enhanced by coexpression of MKK3-MPK7. Our results reveal that the MKK3 pathway plays a role in pathogen defense and further underscore the importance and complexity of MAPK signaling in plant stress responses.


Molecular Plant | 2009

A Major Role of the MEKK1–MKK1/2–MPK4 Pathway in ROS Signalling

Andrea Pitzschke; Armin Djamei; Frédérique Bitton; Heribert Hirt

Over the last few years, it has become evident that reactive oxygen species (ROS) signalling plays an important role in various physiological responses, including pathogen defense and stomatal opening/closure. On the other hand, ROS overproduction is detrimental for proper plant growth and development, indicating that the regulation of an appropriate redox balance is essential for plants. ROS homeostasis in plants involves the mitogen-activated protein kinase (MAPK) pathway consisting of the MAPK kinase kinase MEKK1 and the MAPK MPK4. Phenotypic and molecular analysis revealed that the MAPK kinases MKK1 and MKK2 are part of a cascade, regulating ROS and salicylic acid (SA) accumulation. Gene expression analysis shows that of 32 transcription factors reported to be highly responsive to multiple ROS-inducing conditions, 20 are regulated by the MEKK1, predominantly via the MEKK1-MKK1/2-MPK4 pathway. However, MEKK1 also functions on other as yet unknown pathways and part of the MEKK1-dependent MPK4 responses are regulated independently of MKK1 and MKK2. Overall, this analysis emphasizes the central role of this MAPK cascade in oxidative stress signalling, but also indicates the high level of complexity revealed by this signalling network.


Proceedings of the National Academy of Sciences of the United States of America | 2009

VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression

Andrea Pitzschke; Armin Djamei; Markus Teige; Heribert Hirt

The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway.


Molecular Microbiology | 2009

Physical-chemical plant-derived signals induce differentiation in Ustilago maydis.

Artemio Mendoza-Mendoza; Patrick Berndt; Armin Djamei; Carolin Weise; Uwe Linne; Mohamed A. Marahiel; Miroslav Vraneš; Jörg Kämper; Regine Kahmann

Ustilago maydis is able to initiate pathogenic development after fusion of two haploid cells with different mating type. On the maize leaf surface, the resulting dikaryon switches to filamentous growth, differentiates appressoria and penetrates the host. Here, we report on the plant signals required for filament formation and appressorium development in U. maydis. In vitro, hydroxy‐fatty acids stimulate filament formation via the induction of pheromone genes and this signal can be bypassed by genetically activating the downstream MAP kinase module. Hydrophobicity also induces filaments and these resemble the dikaryotic filaments formed on the plant surface. With the help of a marker gene that is specifically expressed in the tip cell of those hyphae that have formed an appressorium, hydrophobicity is shown to be essential for appressorium development in vitro. Hydroxy‐fatty acids or a cutin monomer mixture isolated from maize leaves have a stimulatory role when a hydrophobic surface is provided. Our results suggest that the early phase of communication between U. maydis and its host plant is governed by two different stimuli.


Molecular Plant-microbe Interactions | 2007

The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis.

Günter Brader; Armin Djamei; Markus Teige; E. Tapio Palva; Heribert Hirt

The Arabidopsis mitogen-activated protein kinase (MAPK) kinase 2 (MKK2) was shown to mediate cold and salt stress responses through activation of the two MAP kinases MPK4 and MPK6. Transcriptome analysis of plants expressing constitutively active MKK2 (MKK2-EE plants) showed altered expression of genes induced by abiotic stresses but also a significant number of genes involved in defense responses. Both MPK4 and MPK6 became rapidly activated upon Pseudomonas syringae pv. tomato DC3000 infection and MKK2-EE plants showed enhanced levels of MPK4 activation. Although MKK2-EE plants shared enhanced expression of genes encoding enzymes of ethylene (ET) and jasmonic acid (JA) synthesis, ET, JA, and salicylic acid (SA) levels did not differ dramatically from those of wild-type or mkk2-null plants under ambient growth conditions. Upon P. syringae pv. tomato DC3000 infection, however, MKK2-EE plants showed reduced increases of JA and SA levels. These results indicate that MKK2 is involved in regulating hormone levels in response to pathogens. MKK2-EE plants were more resistant to infection by P. syringae pv. tomato DC3000 and Erwinia carotovora subsp. carotovora, but showed enhanced sensitivity to the fungal necrotroph Alternaria brassicicola. Our data indicate that MKK2 plays a role in abiotic stress tolerance and plant disease resistance.


eLife | 2014

A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

Shigeyuki Tanaka; Thomas Brefort; Nina Neidig; Armin Djamei; Jörg Kahnt; Wilfred Vermerris; Stefanie Koenig; Kirstin Feussner; Ivo Feussner; Regine Kahmann

The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001


PLOS Pathogens | 2012

Ustilago maydis: Dissecting the Molecular Interface between Pathogen and Plant

Armin Djamei; Regine Kahmann

Fungal diseases of plants represent one of the most eminent threats to agriculture. Given the food needs of a growing world population and that more and more crops are devoted to fuel production, the necessity to develop crops with better resistance to disease is increasing. To accomplish this, the mechanisms that plant pathogenic fungi use to colonize plants need to be elucidated. As of now, there are only few examples/models in which this can be done on a functional, genome-wide level, taking into account both the pathogen and its host plant [1]. The fungus Ustilago maydis (U. maydis) is one of these examples. It is a member of the smut fungi: a large group of parasites infecting mostly grasses, including several important crop plants such as maize (Figure 1B), wheat, barley, and sugar cane. Smut fungi are biotrophs, i.e., parasites that need the living host plant to complete their sexual life cycle [2], [3]. They do not establish prominent feeding structures like the related, haustoria-forming rust fungi. During penetration, the host plasma membrane invaginates and completely encases the intracellular hyphae (Figure 1A), establishing an extended interaction zone [4] mediating the exchange of molecules between fungus and host. In contrast to most smut fungi that cause a systemic infection, remaining symptomless until the plant flowers, U. maydis can infect all above-ground parts of the maize plant but fails to spread systemically. U. maydis induces local tumors in which spores develop (Figure 1B) – a unique feature that allows detection of symptoms in corn seedlings less than a week after syringe infection with high levels of inoculum. This, together with the toolbox developed for reverse genetics, cell biology, and functional studies, has contributed to its status as a model for biotrophic basidiomycete fungi [5]. Here the current level of our understanding of the elaborate molecular crosstalk between U. maydis and its host plant will be discussed. Figure 1 Disease symptoms and schematic presentation of effector cocktail use in different maize organs and tissues infected by U. maydis.


Molecular Plant-microbe Interactions | 2013

In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells

Stephan Wawra; Armin Djamei; Isabell Albert; Thorsten Nürnberger; Regine Kahmann; Pieter van West

Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.

Collaboration


Dive into the Armin Djamei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heribert Hirt

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Andrea Pitzschke

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Franziska Rabe

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iva Rajh

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Simon Uhse

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexandra Stirnberg

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Denise Seitner

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge