Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnab Mukherjee is active.

Publication


Featured researches published by Arnab Mukherjee.


Angewandte Chemie | 2012

A Designed Functional Metalloenzyme that Reduces O2 to H2O with Over One Thousand Turnovers

Kyle D. Miner; Arnab Mukherjee; Yi Gui Gao; Eric L. Null; Igor D. Petrik; Xuan Zhao; Natasha Yeung; Howard Robinson; Yi Lu

Rational design of functional enzymes with a high number of turnovers is a challenge, especially those with a complex active site, such as respiratory oxidases. Introducing two His and one Tyr residues into myoglobin resulted in enzymes that reduce O{sub 2} to H{sub 2}O with more than 1000 turnovers and minimal release of reactive oxygen species. The positioning of the Tyr residue is critical for activity.


Biosensors and Bioelectronics | 2013

A multiplexed microfluidic platform for rapid antibiotic susceptibility testing

Ritika Mohan; Arnab Mukherjee; Selami E. Sevgen; Chotitath Sanpitakseree; Jaebum Lee; Charles M. Schroeder; Paul J. A. Kenis

Effective treatment of clinical infections is critically dependent on the ability to rapidly screen patient samples to identify antibiograms of infecting pathogens. Existing methods for antibiotic susceptibility testing suffer from several disadvantages, including long turnaround times, excess sample and reagent consumption, poor detection sensitivity, and limited combinatorial capabilities. Unfortunately, these factors preclude the timely administration of appropriate antibiotics, complicating management of infections and exacerbating the development of antibiotic resistance. Here, we seek to address these issues by developing a microfluidic platform that relies on fluorescence detection of bacteria that express green fluorescent protein for highly sensitive and rapid antibiotic susceptibility testing. This platform possesses several advantages compared to conventional methods: (1) analysis of antibiotic action in two to four hours, (2) enhanced detection sensitivity (≈ 1 cell), (3) minimal consumption of cell samples and antibiotic reagents (<6 µL), and (4) improved portability through the implementation of normally closed valves. We employed this platform to quantify the effects of four antibiotics (ampicillin, cefalexin, chloramphenicol, tetracycline) and their combinations on Escherichia coli. Within four hours, the susceptibility of bacteria to antibiotics can be determined by detecting variations in maxima of local fluorescence intensity over time. As expected, cell density is a major determinant of antibiotic efficacy. Our results also revealed that combinations of three or more antibiotics are not necessarily better for eradicating pathogens compared to pairs of antibiotics. Overall, this microfluidic based biosensor technology has the potential to provide rapid and precise guidance in clinical therapies by identifying the antibiograms of pathogens.


PLOS ONE | 2013

Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters.

Arnab Mukherjee; Joshua Walker; Kevin B. Weyant; Charles M. Schroeder

Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)–namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4–11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10–40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.


Journal of the American Chemical Society | 2015

Defining the Role of Tyrosine and Rational Tuning of Oxidase Activity by Genetic Incorporation of Unnatural Tyrosine Analogs

Yang Yu; Xiaoxuan Lv; Jiasong Li; Qing Sheng Zhou; Chang Cui; Parisa Hosseinzadeh; Arnab Mukherjee; Mark J. Nilges; Jiangyun Wang; Yi Lu

While a conserved tyrosine (Tyr) is found in oxidases, the roles of phenol ring pKa and reduction potential in O2 reduction have not been defined despite many years of research on numerous oxidases and their models. These issues represent major challenges in our understanding of O2 reduction mechanism in bioenergetics. Through genetic incorporation of unnatural amino acid analogs of Tyr, with progressively decreasing pKa of the phenol ring and increasing reduction potential, in the active site of a functional model of oxidase in myoglobin, a linear dependence of both the O2 reduction activity and the fraction of H2O formation with the pKa of the phenol ring has been established. By using these unnatural amino acids as spectroscopic probe, we have provided conclusive evidence for the location of a Tyr radical generated during reaction with H2O2, by the distinctive hyperfine splitting patterns of the halogenated tyrosines and one of its deuterated derivatives incorporated at the 33 position of the protein. These results demonstrate for the first time that enhancing the proton donation ability of the Tyr enhances the oxidase activity, allowing the Tyr analogs to augment enzymatic activity beyond that of natural Tyr.


Current Opinion in Biotechnology | 2015

Flavin-based fluorescent proteins: emerging paradigms in biological imaging.

Arnab Mukherjee; Charles M. Schroeder

Flavin-based fluorescent proteins (FbFPs) are an emerging class of fluorescent reporters characterized by oxygen-independent fluorescence and a small size - key advantages compared to the green fluorescent protein (GFP). FbFPs are at a nascent stage of development. However, they have already been used as versatile reporters for studying anaerobic biosystems and viral assemblies. Recently, FbFPs with improved brightness and photostability have been engineered. In addition, several FbFPs show high degrees of thermal and pH stability. For these reasons, FbFPs hold strong promise to extend bioimaging to clinically and industrially significant systems that have been challenging to study using GFPs. In this review, we highlight recent developments in the FbFP toolbox and explore further improvements necessary to maximize the potential of FbFPs.


Nature Communications | 2015

A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction.

Sohini Mukherjee; Arnab Mukherjee; Ambika Bhagi-Damodaran; Manjistha Mukherjee; Yi Lu; Abhishek Dey

Creating an artificial functional mimic of the mitochondrial enzyme cytochrome c oxidase (CcO) has been a long-term goal of the scientific community as such a mimic will not only add to our fundamental understanding of how CcO works but may also pave the way for efficient electrocatalysts for oxygen reduction in hydrogen/oxygen fuel cells. Here we develop an electrocatalyst for reducing oxygen to water under ambient conditions. We use site-directed mutants of myoglobin, where both the distal Cu and the redox-active tyrosine residue present in CcO are modelled. In situ Raman spectroscopy shows that this catalyst features very fast electron transfer rates, facile oxygen binding and O–O bond lysis. An electron transfer shunt from the electrode circumvents the slow dissociation of a ferric hydroxide species, which slows down native CcO (bovine 500 s−1), allowing electrocatalytic oxygen reduction rates of 5,000 s−1 for these biosynthetic models.


Lab on a Chip | 2011

Multiplexed detection of nucleic acids in a combinatorial screening chip

Benjamin R. Schudel; Melikhan Tanyeri; Arnab Mukherjee; Charles M. Schroeder; Paul J. A. Kenis

Multiplexed diagnostic testing has the potential to dramatically improve the quality of healthcare. Simultaneous measurement of health indicators and/or disease markers reduces turnaround time and analysis cost and speeds up the decision making process for diagnosis and treatment. At present, however, most diagnostic tests only provide information on a single indicator or marker. Development of efficient diagnostic tests capable of parallel screening of infectious disease markers could significantly advance clinical and diagnostic testing in both developed and developing parts of the world. Here, we report the multiplexed detection of nucleic acids as disease markers within discrete wells of a microfluidic chip using molecular beacons and total internal reflection fluorescence microscopy (TIRFM). Using a 4 × 4 array of 200 pL wells, we screened for the presence of four target single stranded oligonucleotides encoding for conserved regions of the genomes of four common viruses: human immunodeficiency virus-1 (HIV-1), human papillomavirus (HPV), Hepatitis A (Hep A) and Hepatitis B (Hep B). Target oligonucleotides are accurately detected and discriminated against alternative oligonucleotides with different sequences. This combinatorial chip represents a versatile platform for the development of clinical diagnostic tests for simultaneous screening, detection and monitoring of a wide range of biological markers of disease and health using minimal sample size.


Journal of Biological Engineering | 2012

Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida

Arnab Mukherjee; Kevin B. Weyant; Joshua Walker; Charles M. Schroeder

BackgroundFluorescent reporter proteins have revolutionized our understanding of cellular bioprocesses by enabling live cell imaging with exquisite spatio-temporal resolution. Existing fluorescent proteins are predominantly based on the green fluorescent protein (GFP) and related analogs. However, GFP-family proteins strictly require molecular oxygen for maturation of fluorescence, which precludes their application for investigating biological processes in low-oxygen environments. A new class of oxygen-independent fluorescent reporter proteins was recently reported based on flavin-binding photosensors from Bacillus subtilis and Pseudomonas putida. However, flavin-binding fluorescent proteins show very limited brightness, which restricts their utility as biological imaging probes.ResultsIn this work, we report the discovery of bright mutants of a flavin-binding fluorescent protein from P. putida using directed evolution by site saturation mutagenesis. We discovered two mutations at a chromophore-proximal amino acid (F37S and F37T) that confer a twofold enhancement in brightness relative to the wild type fluorescent protein through improvements in quantum yield and holoprotein fraction. In addition, we observed that substitution with other aromatic amino acids at this residue (F37Y and F37W) severely diminishes fluorescence emission. Therefore, we identify F37 as a key amino acid residue in determining fluorescence.ConclusionsTo increase the scope and utility of flavin-binding fluorescent proteins as practical fluorescent reporters, there is a strong need for improved variants of the wild type protein. Our work reports on the application of site saturation mutagenesis to isolate brighter variants of a flavin-binding fluorescent protein, which is a first-of-its-kind approach. Overall, we anticipate that the improved variants will find pervasive use as fluorescent reporters for biological studies in low-oxygen environments.


ACS Synthetic Biology | 2015

Engineering and characterization of new LOV-based fluorescent proteins from Chlamydomonas reinhardtii and Vaucheria frigida.

Arnab Mukherjee; Kevin B. Weyant; Utsav Agrawal; Joshua Walker; Isaac K. O. Cann; Charles M. Schroeder

Flavin-based fluorescent proteins (FbFPs) are a new class of fluorescent reporters that exhibit oxygen-independent fluorescence, which is a key advantage over the green fluorescent protein. Broad application of FbFPs, however, has been generally hindered by low brightness. To maximize the utility of FbFPs, there is a pressing need to expand and diversify the limited FbFP library through the inclusion of bright and robust variants. In this work, we use genome mining to identify and engineer two new FbFPs (CreiLOV and VafLOV) from Chlamydomonas reinhardtii and Vaucheria frigida. We show that CreiLOV is a thermostable, photostable, and fast-maturing monomeric reporter that outperforms existing FbFPs in brightness and operational pH range. Furthermore, we show that CreiLOV can be used to monitor dynamic gene expression in Escherichia coli. Overall, our work introduces CreiLOV as a robust addition to the FbFP repertoire and highlights genome mining as a powerful approach to engineer improved FbFPs.


Nature Communications | 2016

Non-invasive imaging using reporter genes altering cellular water permeability.

Arnab Mukherjee; Di Wu; Hunter C. Davis; Mikhail G. Shapiro

Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

Collaboration


Dive into the Arnab Mukherjee's collaboration.

Top Co-Authors

Avatar

Mikhail G. Shapiro

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hunter C. Davis

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Di Wu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

George J. Lu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Abhishek Dey

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Manjistha Mukherjee

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Sohini Mukherjee

Indian Association for the Cultivation of Science

View shared research outputs
Top Co-Authors

Avatar

Arash Farhadi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Howard Robinson

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge