Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnaldur Gylfason is active.

Publication


Featured researches published by Arnaldur Gylfason.


Nature Genetics | 2006

Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes

Struan F. A. Grant; Gudmar Thorleifsson; Inga Reynisdottir; Rafil Benediktsson; Andrei Manolescu; Jesus Sainz; Agnar Helgason; Hreinn Stefansson; Valur Emilsson; Anna Helgadottir; Unnur Styrkarsdottir; Kristinn P. Magnusson; G. Bragi Walters; Ebba Palsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Arnaldur Gylfason; Jona Saemundsdottir; Robert L. Wilensky; Muredach P. Reilly; Daniel J. Rader; Yu Z. Bagger; Claus Christiansen; Vilmundur Gudnason; Gunnar Sigurdsson; Unnur Thorsteinsdottir; Jeffrey R. Gulcher; Augustine Kong; Kari Stefansson

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 × 10−9). This was replicated in a Danish cohort (P = 4.8 × 10−3) and in a US cohort (P = 3.3 × 10−9). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box–containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.


Nature | 2008

Large recurrent microdeletions associated with schizophrenia.

Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


Science | 2007

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir; Gudmar Thorleifsson; Andrei Manolescu; Solveig Gretarsdottir; Thorarinn Blondal; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Asgeir Sigurdsson; Adam Baker; Arnar Palsson; Gisli Masson; Daniel F. Gudbjartsson; Kristinn P. Magnusson; Karl Andersen; Allan I. Levey; Valgerdur M. Backman; Sigurborg Matthiasdottir; Thorbjorg Jonsdottir; Stefan Palsson; Helga Einarsdottir; Steinunn Gunnarsdottir; Arnaldur Gylfason; Viola Vaccarino; W. Craig Hooper; Muredach P. Reilly; Christopher B. Granger; Harland Austin; Daniel J. Rader; Svati H. Shah; Arshed A. Quyyumi

The global endemic of cardiovascular diseases calls for improved risk assessment and treatment. Here, we describe an association between myocardial infarction (MI) and a common sequence variant on chromosome 9p21. This study included a total of 4587 cases and 12,767 controls. The identified variant, adjacent to the tumor suppressor genes CDKN2A and CDKN2B, was associated with the disease with high significance. Approximately 21% of individuals in the population are homozygous for this variant, and their estimated risk of suffering myocardial infarction is 1.64 times as great as that of noncarriers. The corresponding risk is 2.02 times as great for early-onset cases. The population attributable risk is 21% for MI in general and 31% for early-onset cases.


Nature Genetics | 2006

A common variant associated with prostate cancer in European and African populations

Laufey T Amundadottir; Patrick Sulem; Julius Gudmundsson; Agnar Helgason; Adam Baker; Bjarni A. Agnarsson; Asgeir Sigurdsson; Kristrun R. Benediktsdottir; Jean-Baptiste Cazier; Jesus Sainz; Margret Jakobsdottir; Jelena Kostic; Droplaug N. Magnusdottir; Shyamali Ghosh; Kari Agnarsson; Birgitta Birgisdottir; Louise le Roux; Adalheidur Olafsdottir; Thorarinn Blondal; Margret B. Andresdottir; Olafia Svandis Gretarsdottir; Jon Thor Bergthorsson; Daniel F. Gudbjartsson; Arnaldur Gylfason; Gudmar Thorleifsson; Andrei Manolescu; Kristleifur Kristjansson; Gudmundur Geirsson; Helgi J. Ísaksson; Julie A. Douglas

With the increasing incidence of prostate cancer, identifying common genetic variants that confer risk of the disease is important. Here we report such a variant on chromosome 8q24, a region initially identified through a study of Icelandic families. Allele −8 of the microsatellite DG8S737 was associated with prostate cancer in three case-control series of European ancestry from Iceland, Sweden and the US. The estimated odds ratio (OR) of the allele is 1.62 (P = 2.7 × 10−11). About 19% of affected men and 13% of the general population carry at least one copy, yielding a population attributable risk (PAR) of ∼8%. The association was also replicated in an African American case-control group with a similar OR, in which 41% of affected individuals and 30% of the population are carriers. This leads to a greater estimated PAR (16%) that may contribute to higher incidence of prostate cancer in African American men than in men of European ancestry.


Nature Genetics | 2005

A common inversion under selection in Europeans.

Hreinn Stefansson; Agnar Helgason; Gudmar Thorleifsson; Valgerdur Steinthorsdottir; Gisli Masson; John Barnard; Adam Baker; Aslaug Jonasdottir; Andres Ingason; Vala G. Gudnadottir; Natasa Desnica; Andrew A. Hicks; Arnaldur Gylfason; Daniel F. Gudbjartsson; Gudrun M. Jonsdottir; Jesus Sainz; Kari Agnarsson; Birgitta Birgisdottir; Shyamali Ghosh; Adalheidur Olafsdottir; Jean-Baptiste Cazier; Kristleifur Kristjansson; Michael L. Frigge; Thorgeir E. Thorgeirsson; Jeffrey R. Gulcher; Augustine Kong; Kari Stefansson

A refined physical map of chromosome 17q21.31 uncovered a 900-kb inversion polymorphism. Chromosomes with the inverted segment in different orientations represent two distinct lineages, H1 and H2, that have diverged for as much as 3 million years and show no evidence of having recombined. The H2 lineage is rare in Africans, almost absent in East Asians but found at a frequency of 20% in Europeans, in whom the haplotype structure is indicative of a history of positive selection. Here we show that the H2 lineage is undergoing positive selection in the Icelandic population, such that carrier females have more children and have higher recombination rates than noncarriers.


Nature Genetics | 2008

Many sequence variants affecting diversity of adult human height

Daniel F. Gudbjartsson; G. Bragi Walters; Gudmar Thorleifsson; Hreinn Stefansson; Bjarni V. Halldórsson; Pasha Zusmanovich; Patrick Sulem; Steinunn Thorlacius; Arnaldur Gylfason; Stacy Steinberg; Anna Helgadottir; Andres Ingason; Valgerdur Steinthorsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Oluf Pedersen; Katja K. Aben; J. Alfred Witjes; Dorine W. Swinkels; Martin den Heijer; Barbara Franke; A.L.M. Verbeek; Diane M. Becker; Lisa R. Yanek; Lewis C. Becker

Adult human height is one of the classical complex human traits. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses, and the strongest association was with SNPs in the ZBTB38 gene.


Nature | 2009

Parental origin of sequence variants associated with complex diseases.

Augustine Kong; Valgerdur Steinthorsdottir; Gisli Masson; Gudmar Thorleifsson; Patrick Sulem; Søren Besenbacher; Aslaug Jonasdottir; Asgeir Sigurdsson; Kari T. Kristinsson; Adalbjorg Jonasdottir; Michael L. Frigge; Arnaldur Gylfason; Pall Olason; Sigurjon A. Gudjonsson; Sverrir Sverrisson; Simon N. Stacey; Bardur Sigurgeirsson; Kristrun R. Benediktsdottir; Helgi Sigurdsson; Thorvaldur Jonsson; Rafn Benediktsson; Jón Ólafsson; Oskar Th Johannsson; Astradur B. Hreidarsson; Gunnar Sigurdsson; Anne C. Ferguson-Smith; Daniel F. Gudbjartsson; Unnur Thorsteinsdottir; Kari Stefansson

Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Five—one with breast cancer, one with basal-cell carcinoma and three with type 2 diabetes—have parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site.


Human Molecular Genetics | 2009

Disruption of the neurexin 1 gene is associated with schizophrenia

Dan Rujescu; Andres Ingason; Sven Cichon; Olli Pietiläinen; Michael R. Barnes; Timothea Toulopoulou; Marco Picchioni; Evangelos Vassos; Ulrich Ettinger; Elvira Bramon; Robin M. Murray; Mirella Ruggeri; Sarah Tosato; Chiara Bonetto; Stacy Steinberg; Engilbert Sigurdsson; T. Sigmundsson; Hannes Petursson; Arnaldur Gylfason; Pall Olason; Gudmundur Hardarsson; Gudrun A Jonsdottir; Omar Gustafsson; Ragnheidur Fossdal; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann; Per Hoffmann; Caroline Crombie; Gillian M. Fraser

Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data. We found 66 deletions and 5 duplications in NRXN1, including a de novo deletion: 12 deletions and 2 duplications occurred in schizophrenia cases (0.47%) compared to 49 and 3 (0.15%) in controls. There was no common breakpoint and the CNVs varied from 18 to 420 kb. No CNVs were found in NRXN2 or NRXN3. We performed a Cochran-Mantel-Haenszel exact test to estimate association between all CNVs and schizophrenia (P = 0.13; OR = 1.73; 95% CI 0.81-3.50). Because the penetrance of NRXN1 CNVs may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1 deletions affecting exons confer risk of schizophrenia.


Nature | 2010

Fine-scale recombination rate differences between sexes, populations and individuals

Augustine Kong; Gudmar Thorleifsson; Daniel F. Gudbjartsson; Gisli Masson; Asgeir Sigurdsson; Aslaug Jonasdottir; G. Bragi Walters; Adalbjorg Jonasdottir; Arnaldur Gylfason; Kari T. Kristinsson; Sigurjon A. Gudjonsson; Michael L. Frigge; Agnar Helgason; Unnur Thorsteinsdottir; Kari Stefansson

Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent–offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.


Nature Genetics | 2009

Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility

Julius Gudmundsson; Patrick Sulem; Daniel F. Gudbjartsson; Thorarinn Blondal; Arnaldur Gylfason; Bjarni A. Agnarsson; Kristrun R. Benediktsdottir; Droplaug N. Magnusdottir; Gudbjorg Orlygsdottir; Margret Jakobsdottir; Simon N. Stacey; Asgeir Sigurdsson; Tiina Wahlfors; Teuvo L.J. Tammela; Joan P. Breyer; Kate M. McReynolds; Kevin M. Bradley; Berta Saez; Javier Godino; Sebastian Navarrete; Fernando Fuertes; Laura Murillo; Eduardo Polo; Katja K. Aben; Inge M. van Oort; Brian K. Suarez; Brian T. Helfand; Donghui Kan; Carlo Zanon; Michael L. Frigge

We report a prostate cancer genome-wide association follow-on study. We discovered four variants associated with susceptibility to prostate cancer in several European populations: rs10934853[A] (OR = 1.12, P = 2.9 × 10−10) on 3q21.3; two moderately correlated (r2 = 0.07) variants, rs16902094[G] (OR = 1.21, P = 6.2 × 10−15) and rs445114[T] (OR = 1.14, P = 4.7 × 10−10), on 8q24.21; and rs8102476[C] (OR = 1.12, P = 1.6 × 10−11) on 19q13.2. We also refined a previous association signal on 11q13 with the SNP rs11228565[A] (OR = 1.23, P = 6.7 × 10−12). In a multivariate analysis using 22 prostate cancer risk variants typed in the Icelandic population, we estimated that carriers in the top 1.3% of the risk distribution are at a 2.5 times greater risk of developing the disease than members of the general population.

Collaboration


Dive into the Arnaldur Gylfason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge