Arnaud Chulliat
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnaud Chulliat.
Earth, Planets and Space | 2015
Erwan Thébault; Christopher C. Finlay; Ciaran Beggan; Patrick Alken; Julien Aubert; Olivier Barrois; F. Bertrand; T. N. Bondar; Axel Boness; Laura Brocco; Elisabeth Canet; Aude Chambodut; Arnaud Chulliat; Pierdavide Coïsson; François Civet; Aimin Du; Alexandre Fournier; Isabelle Fratter; N. Gillet; Brian Hamilton; Mohamed Hamoudi; Gauthier Hulot; Thomas Jager; Monika Korte; Weijia Kuang; Xavier Lalanne; Benoit Langlais; Jean-Michel Leger; Vincent Lesur; F. J. Lowes
The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic field.
Earth, Planets and Space | 2013
Nils Olsen; Eigil Friis-Christensen; Rune Floberghagen; Patrick Alken; Ciaran Beggan; Arnaud Chulliat; Eelco Doornbos; Joao Encarnacao; Brian Hamilton; Gauthier Hulot; Jose van den IJssel; Alexey Kuvshinov; Vincent Lesur; H. Lühr; Susan Macmillan; Stefan Maus; Max Noja; Poul Erik Holmdahl Olsen; Jaeheung Park; Gernot Plank; Christoph Püthe; Jan Rauberg; Patricia Ritter; Martin Rother; Terence J. Sabaka; Reyko Schachtschneider; Olivier Sirol; Claudia Stolle; E. Thébault; Alan Thomson
Swarm, a three-satellite constellation to study the dynamics of the Earth’s magnetic field and its interactions with the Earth system, is expected to be launched in late 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, in order to gain new insights into the Earth system by improving our understanding of the Earth’s interior and environment. In order to derive advanced models of the geomagnetic field (and other higher-level data products) it is necessary to take explicit advantage of the constellation aspect of Swarm. The Swarm SCARF (SatelliteConstellationApplication andResearchFacility) has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.
Earth, Planets and Space | 2010
Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; Vincent Lesur; F. J. Lowes; C. Manoj; Martin Rother; Reyko Schachtschneider
BackgroundThe 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015).FindingsThe models were derived from weighted averages of candidate models submitted by ten international teams. Teams were led by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model using well-defined statistical criteria in the spectral domain and maps in the physical space. These analyses were made to pinpoint both troublesome coefficients and the geographical regions where the candidate models most significantly differ. Some models showed clear deviation from other candidate models. However, a majority of the task force members appointed by IAGA thought that the differences were not sufficient to exclude models that were well documented and based on different techniques.ConclusionsThe task force thus voted for and applied an iterative robust estimation scheme in space. In this paper, we report on the evaluations of the candidate models and provide details of the algorithm that was used to derive the IGRF-12 product.
Geophysical Research Letters | 2015
Nils Olsen; Gauthier Hulot; Vincent Lesur; Christopher C. Finlay; Ciaran Beggan; Arnaud Chulliat; Terence J. Sabaka; Rune Floberghagen; Eigil Friis-Christensen; Roger Haagmans; Stavros Kotsiaros; H. Lühr; Lars Tøffner-Clausen; Pierre Vigneron
Data from the first year of ESAs Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earths magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
Eos, Transactions American Geophysical Union | 2013
Jeffrey J. Love; Arnaud Chulliat
Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [e.g., Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management as well as methods for data processing and checking. INTERMAGNET institutes have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists.
Journal of Geophysical Research | 2014
Arnaud Chulliat; Stefan Maus
The geomagnetic secular acceleration (SA), defined as the second-order time derivative of the Earths core magnetic field, is investigated using data from the CHAMP satellite. We present a set of SA spherical harmonic models calculated from 3 year time intervals of CHAMP data, centered on epochs ranging from 2002.19 to 2009.51 with a 30 day step. These models are parameterized as second-order Taylor expansions in time and are not regularized, except for SA degrees larger than 8. We find that the SA underwent two power pulses in 2006 and 2009 at the core-mantle boundary (mostly on degrees 5 and 6) and at the Earths surface (mostly on degrees 2 to 4). These pulses take the form of intense SA patches at the core surface in the low-latitude Atlantic sector and in the Indian Ocean sector. In the Atlantic sector, the 2006 and 2009 SA patches are markedly anticorrelated. Principal component analysis suggests that the two pulses are part of a standing wave of period about 6 years. At the Earths surface, this wave results in a succession of geomagnetic jerks, i.e., sudden SA polarity changes, in 2003, 2007, and 2011 near the Atlantic sector. The 2011 jerk is detected using the latest observatory data available, including quasi-definitive data from January to October 2013. The origin of the wave is not clear; we find that it cannot be generated by the zonal toroidal flow of a torsional oscillation. Other possible interpretations are discussed.
Earth, Planets and Space | 2013
Arnaud Chulliat; Pierre Vigneron; E. Thebault; Olivier Sirol; Gauthier Hulot
The geomagnetic daily variation at mid-to-low latitudes, referred to as the geomagnetic Sq field, is generated by electrical currents within the conducting layers of the ionosphere on the dayside of the Earth. It is enhanced in a narrow equatorial band, due to the equatorial electrojet. The upcoming ESA Swarm satellite mission, to be launched end of 2013, will consist of three satellites in low-Earth orbit, providing a dense spatial and temporal coverage of the ionospheric Sq field. A Satellite Constellation Application and Research Facility (SCARF) has been set up by a consortium of research institutions, aiming at producing various level-2 data products during the Swarm mission. The Dedicated Ionospheric Field Inversion (DIFI) chain is a SCARF algorithm calculating global, spherical harmonic models of the Sq field at quiet times. It describes seasonal and solar cycle variations, separates primary and induced magnetic fields based upon advanced 3D-models of the mantle electrical conductivity, and relies on core, lithospheric and magnetospheric field models derived from other SCARF algorithms for removing non-ionospheric fields from the data. The DIFI chain was thoroughly tested on synthetic data during the SCARF preparation phase; it is now ready to be used for deriving models from real Swarm data.
Earth, Planets and Space | 2016
Arnaud Chulliat; Pierre Vigneron; Gauthier Hulot
Data-based modeling of the magnetic field originating in the Earth’s ionosphere is challenging due to the multiple timescales involved and the small spatial scales of some of the current systems, especially the equatorial electrojet (EEJ) that flows along the magnetic dip equator. The Dedicated Ionospheric Field Inversion (DIFI) algorithm inverts a combination of Swarm satellite and ground observatory data at mid- to low latitudes and provides models of the solar-quiet (Sq) and EEJ magnetic fields on the ground and at satellite altitude. The basis functions of these models are spherical harmonics in quasi-dipole coordinates and Fourier series describing the 24-, 12-, 8- and 6-h periodicities, as well as the annual and semiannual variations. A 1-D conductivity model of the Earth and a 2-D conductivity model of the oceans and continents are used to separate the primary ionospheric field from its induced counterpart. First results from the DIFI algorithm confirm several well-known features of the seasonal variability and westward drift speed of the Sq current systems. They also reveal a peculiar seasonal variability of the Sq field in the Southern hemisphere and a longitudinal variability reminiscent of the EEJ wave-4 structure in the same hemisphere. These observations suggest that the Sq and EEJ currents might be electrically coupled, but only for some seasons and longitudes and more so in the Southern hemisphere than in the Northern hemisphere.
Geophysical Research Letters | 2015
Arnaud Chulliat; Patrick Alken; Stefan Maus
Since 2000, magnetic field variations originating in the core have been dominated by several pulses in the secular acceleration, leading to sharp geomagnetic “jerks” at the Earths surface. Using models built from (i) Defense Meteorological Satellite Program data and (ii) Orsted and Swarm satellites and ground observatory data, we show that a new pulse occurred in 2012.5, immediately following two pulses in 2006 and 2009. The three pulses can be decomposed into several equatorially symmetric modes propagating eastward and westward at 550 to 1100 km/yr, and one equatorially antisymmetric mode propagating eastward at 1650 km/yr. The characteristics of these modes are compatible to some extent with equatorial magnetic Rossby waves propagating within a 140 km thick layer at the top of the core with a density contrast of 50 ppm. This interpretation, if confirmed, would provide a new explanation for geomagnetic jerks and pulses based on stable stratification of the core.
Geophysical Research Letters | 2015
Patrick Alken; Stefan Maus; Arnaud Chulliat; Pierre Vigneron; Olivier Sirol; Gauthier Hulot
The eastward equatorial electric field (EEF) in the E region ionosphere drives many important phenomena at low latitudes. We developed a method of estimating the EEF from magnetometer measurements of near-polar orbiting satellites as they cross the magnetic equator, by recovering a clean signal of the equatorial electrojet current and modeling the observed current to determine the electric field present during the satellite pass. This algorithm is now implemented as an official Level-2 Swarm product. Here we present first results of EEF estimates from nearly a year of Swarm data. We find excellent agreement with independent measurements from the ground-based coherent scatter radar at Jicamarca, Peru, as well as horizontal field measurements from the West African Magnetometer Network magnetic observatory chain. We also calculate longitudinal gradients of EEF measurements made by the A and C lower satellite pair and find gradients up to about 0.05 mV/m/deg with significant longitudinal variability.