Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnaud Duchon is active.

Publication


Featured researches published by Arnaud Duchon.


Molecular Nutrition & Food Research | 2014

Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans

Rafael de la Torre; Susana de Sola; Meritxell Pons; Arnaud Duchon; María Martínez de Lagrán; Magí Farré; Montserrat Fitó; Bessy Benejam; Klaus Langohr; Joan Rodríguez; Mitona Pujadas; Jean Charles Bizot; Aida Cuenca; Nathalie Janel; Silvina Catuara; Maria Isabel Covas; Henri Bléhaut; Yann Herault; Jean M. Delabar; Mara Dierssen

SCOPE Trisomy for human chromosome 21 results in Down syndrome (DS), which is among the most complex genetic perturbations leading to intellectual disability. Accumulating data suggest that overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), is a critical pathogenic mechanisms in the intellectual deficit. METHODS AND RESULTS Here we show that the green tea flavonol epigallocatechin-gallate (EGCG), a DYRK1A inhibitor, rescues the cognitive deficits of both segmental trisomy 16 (Ts65Dn) and transgenic mice overexpressing Dyrk1A in a trisomic or disomic genetic background, respectively. It also significantly reverses cognitive deficits in a pilot study in DS individuals with effects on memory recognition, working memory and quality of life. We used the mouse models to ensure that EGCG was able to reduce DYRK1A kinase activity in the hippocampus and found that it also induced significant changes in plasma homocysteine levels, which were correlated with Dyrk1A expression levels. Thus, we could use plasma homocysteine levels as an efficacy biomarker in our human study. CONCLUSION We conclude that EGCG is a promising therapeutic tool for cognitive enhancement in DS, and its efficacy may depend of Dyrk1A inhibition.


Journal of Psychopharmacology | 2011

Specific targeting of the GABA-A receptor α5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice

J. Braudeau; B. Delatour; Arnaud Duchon; P. Lopes Pereira; L. Dauphinot; F. de Chaumont; Jean-Christophe Olivo-Marin; R. H. Dodd; Yann Herault; M.-C. Potier

An imbalance between inhibitory and excitatory neurotransmission has been proposed to contribute to altered brain function in individuals with Down syndrome (DS). Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system and accordingly treatment with GABA-A antagonists can efficiently restore cognitive functions of Ts65Dn mice, a genetic model for DS. However, GABA-A antagonists are also convulsant which preclude their use for therapeutic intervention in DS individuals. Here, we have evaluated safer strategies to release GABAergic inhibition using a GABA-A-benzodiazepine receptor inverse agonist selective for the α5-subtype (α5IA). We demonstrate that α5IA restores learning and memory functions of Ts65Dn mice in the novel-object recognition and in the Morris water maze tasks. Furthermore, we show that following behavioural stimulation, α5IA enhances learning-evoked immediate early gene products in specific brain regions involved in cognition. Importantly, acute and chronic treatments with α5IA do not induce any convulsant or anxiogenic effects that are associated with GABA-A antagonists or non-selective inverse agonists of the GABA-A-benzodiazepine receptors. Finally, chronic treatment with α5IA did not induce histological alterations in the brain, liver and kidney of mice. Our results suggest that non-convulsant α5-selective GABA-A inverse agonists could improve learning and memory deficits in DS individuals.


Human Molecular Genetics | 2009

A NEW MOUSE MODEL FOR THE TRISOMY OF THE ABCG1-U2AF1 REGION REVEALS THE COMPLEXITY OF THE COMBINATORIAL GENETIC CODE OF DOWN SYNDROME

Patricia Lopes Pereira; Laetitia Magnol; Ignasi Sahún; Véronique Brault; Arnaud Duchon; Paola Prandini; Agnès Gruart; Jean-Charles Bizot; Bernadette Chadefaux-Vekemans; Samuel Deutsch; Fabrice Trovero; José M. Delgado-García; Mara Dierssen; Yann Herault

Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1–U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1–U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1–U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1–U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.


Mammalian Genome | 2011

Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling down syndrome

Arnaud Duchon; Matthieu Raveau; Claire Chevalier; Valérie Nalesso; Andrew J. Sharp; Yann Herault

Down syndrome (DS) is the most frequent genetic disorder leading to intellectual disabilities and is caused by three copies of human chromosome 21. Mouse models are widely used to better understand the physiopathology in DS or to test new therapeutic approaches. The older and the most widely used mouse models are the trisomic Ts65Dn and the Ts1Cje mice. They display deficits similar to those observed in DS people, such as those in behavior and cognition or in neuronal abnormalities. The Ts65Dn model is currently used for further therapeutic assessment of candidate drugs. In both models, the trisomy was induced by reciprocal chromosomal translocations that were not further characterized. Using a comparative genomic approach, we have been able to locate precisely the translocation breakpoint in these two models and we took advantage of this finding to derive a new and more efficient Ts65Dn genotyping strategy. Furthermore, we found that the translocations introduce additional aneuploidy in both models, with a monosomy of seven genes in the most telomeric part of mouse chromosome 12 in the Ts1Cje and a trisomy of 60 centromeric genes on mouse chromosome 17 in the Ts65Dn. Finally, we report here the overexpression of the newly found aneuploid genes in the Ts65Dn heart and we discuss their potential impact on the validity of the DS model.


Neurobiology of Disease | 2014

Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage.

Benoit Souchet; Fayçal Guedj; Ignasi Sahún; Arnaud Duchon; Fabrice Daubigney; Anne Badel; Yuchio Yanagawa; María José Barallobre; Mara Dierssen; Eugene Yu; Yann Herault; Mariona Arbones; Nathalie Janel; Nicole Créau; Jean Maurice Delabar

Cognitive deficits in Down syndrome (DS) have been linked to increased synaptic inhibition, leading to an imbalance of excitation/inhibition (E/I). Various mouse models and studies from human brains have implicated an HSA21 gene, the serine/threonine kinase DYRK1A, as a candidate for inducing cognitive dysfunction. Here, consequences of alterations in Dyrk1a dosage were assessed in mouse models with varying copy numbers of Dyrk1a: mBACtgDyrk1a, Ts65Dn and Dp(16)1Yey (with 3 gene copies) and Dyrk1a(+/-) (one functional copy). Molecular (i.e. immunoblotting/immunohistochemistry) and behavioral analyses (e.g., rotarod, Morris water maze, Y-maze) were performed in mBACtgDyrk1a mice. Increased expression of DYRK1A in mBACtgDyrk1a induced molecular alterations in synaptic plasticity pathways, particularly expression changes in GABAergic and glutaminergic related proteins. Similar alterations were observed in models with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey, and were reversed in the Dyrk1a(+/-) model. Dyrk1a overexpression produced an increased number and signal intensity of GAD67 positive neurons, indicating enhanced inhibition pathways in three different models: mBACtgDyrk1a, hYACtgDyrk1a and Dp(16)1Yey. Functionally, Dyrk1a overexpression protected mice from PTZ-induced seizures related to GABAergic neuron plasticity. Our study shows that DYRK1A overexpression affects pathways involved in synaptogenesis and synaptic plasticity and influences E/I balance toward inhibition. Inhibition of DYRK1A activity offers a therapeutic target for DS, but its inhibition/activation may also be relevant for other psychiatric diseases with E/I balance alterations.


Handbook of experimental pharmacology | 2007

Cre/loxP-Mediated Chromosome Engineering of the Mouse Genome

Véronique Brault; Vanessa Besson; Laetitia Magnol; Arnaud Duchon; Yann Herault

Together with numerous other genome modifications, chromosome engineering offers a very powerful tool to accelerate the functional analysis of the mammalian genome. The technology, based on the Cre/loxP system, is used more and more in the scientific community in order to generate new chromosomes carrying deletions, duplications, inversions and translocations in targeted regions of interest. In this review, we will present the basic principle of the technique either in vivo or in vitro and we will briefly describe some applications to provide highly valuable genetic tools, to decipher the mammalian genome organisation and to analyze human diseases in the mouse.


PLOS Genetics | 2006

Modeling Chromosomes in Mouse to Explore the Function of Genes, Genomic Disorders, and Chromosomal Organization

Véronique Brault; Patricia Lopes Pereira; Arnaud Duchon; Yann Herault

One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures.


PLOS ONE | 2009

DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase

Christophe Noll; Chris Planque; Clémentine Ripoll; Fayçal Guedj; Anna Diez; Véronique Ducros; Nicole Belin; Arnaud Duchon; Jean-Louis Paul; Anne Badel; Yann Grattau; Henri Bléhaut; Yann Herault; Nathalie Janel; Jean-Maurice Delabar

Background Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism in mice. Methodology/Principal Findings Effects of DYRK1A over-expression were examined by biochemical analysis of methionine metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that over-expression of Dyrk1a increased the hepatic NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a. Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The increased NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in lymphoblastoid cell lines from patients with Down syndrome. Conclusions/Significance Our results might give clues to understand the protective effect of Down syndrome against vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the Dyrk1a signaling pathway and the homocysteine cycle.


Frontiers in Behavioral Neuroscience | 2016

DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome

Arnaud Duchon; Yann Herault

Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer’s disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.


Progress in Brain Research | 2012

The in vivo Down syndrome genomic library in mouse.

Yann Herault; Arnaud Duchon; Emilie Velot; Damien Maréchal; Véronique Brault

Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.

Collaboration


Dive into the Arnaud Duchon's collaboration.

Top Co-Authors

Avatar

Yann Herault

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Véronique Brault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia Lopes Pereira

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Sharp

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fayçal Guedj

Floating Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge