Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnaud Liotard is active.

Publication


Featured researches published by Arnaud Liotard.


Reliability, packaging, testing, and characterization of MEMS / MOEMS. Conference | 2005

Static and dynamic microdeformable mirror characterization by phase-shifting and time-averaged interferometry

Arnaud Liotard; Sylvaine Muratet; Frederic Zamkotsian; Jean-Yves Fourniols

Since micro deformable mirrors based on Micro-Opto-Electronico-Mechanical Systems (MOEMS) technology would be essential in next generation adaptive optics system, we are designing, realizing, characterizing and modeling this key-component. Actuators and a continuous-membrane micro deformable mirror (3*3 actuators, 600*600 μm2) have been designed in-house and processed by surface micromachining in the Cronos foundry. A dedicated characterization bench has been developed for the complete analysis. This Twyman-Green interferometer allows high in-plane resolution (4 μm) or large field of view (40mm). Out-of-plane measurements are performed with phase-shifting interferometry showing highly repeatable results (standard deviation<5nm). Features such as optical quality or electro-mechanical behavior are extracted from these high precision three-dimensional component maps and FEM can be fitted. Dynamic analysis like vibration mode and cut-off frequency is realized with time-averaged interferometer. The deformable mirror exhibit a 350nm stroke for 35 volts on the central actuator. This limited stroke could be overcome by changing the components material and promising actuators are made with polymers.


Remote Sensing | 2004

FALCON: a new-generation spectrograph with adaptive optics for the ESO VLT

Francois Assemat; F. Hammer; Eric Gendron; Frédéric Sayède; Philippe Laporte; M. Puech; Jean-Marc Conan; Thierry Fusco; Arnaud Liotard; Frederic Zamkotskian

We present FALCON, a concept of new generation multi-objects integral field spectrograph with adaptive optics for the ESO VLT. The goal of FALCON is to combine high angular resolution (0.15 - 0.25 arcsec) and high spectral resolution (R≥5000) in the 0.8-1.8 μm wavelength range across the Nasmyth field (25 arcmin). Instead of compensating the whole field, the correction will be performed locally on each scientific object. This implies to use small miniaturized devices for adaptive optics correction and wavefront sensing. The main scientific objective of FALCON will be extragalactic astronomy. It will therefore have to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch. We show in this paper that applying adaptive optics correction will provide an important increase in signal to noise ratio, especially for distant galaxies at high redshift.


arXiv: Astrophysics | 2004

FALCON: a concept to extend adaptive optics corrections to cosmological fields

F. Hammer; M. Puech; Francois Assemat; Eric Gendron; Frédéric Sayède; Philippe Laporte; Arnaud Liotard; Frederic Zamkotsian

FALCON is an original concept for a next generation spectrograph at ESO VLT or at future ELTs. It is a spectrograph including multiple small integral field units (IFUs) which can be deployed within a large field of view such as that of VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using off-axis natural reference stars in order to combine, in the 0.8 - 1.8 μm wavelength range, spatial and spectral resolutions (0.1 - 0.15 arcsec and R = 1000 +/- 5000). These conditions are ideally suited for distant galaxy studies, which should be done within fields of view larger than the galaxy clustering scales (4 - 9 Mpc), i.e. foV > 100 arcmin. Instead of compensating the whole field, the adaptive correction will be performed locally on each IFU. This implies to use small miniaturized devices both for adaptive optics correction and wavefront sensing. Applications to high latitude fields imply to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch.


International Conference on Space Optics (ICSO 2014) | 2017

Comparative theoretical and experimental study of a Shack-Hartmann and a Phase Diversity SENSOR, for high-precision wavefront sensing dedicated to Space Active Optics

T. Fusco; Vincent Michau; Laurent M. Mugnier; J. F. Sauvage; Emmanuel Hugot; Arnaud Liotard; Marc Bernot; M. Carlavan; Thierry Bret-Dibat; David Laubier; A. Montmerle Bonnefois; C. Engel; C. Escolle; Marc Ferrari; Frédéric Falzon; Bruno Cugny; Zoran Sodnik; Nikos Karafolas

Earth-imaging or Universe Science satellites are always in need of higher spatial resolutions, in order to discern finer and finer details in images. This means that every new generation of satellites must have a larger main mirror than the previous one, because of the diffraction. Since it allows the use of larger mirrors, active optics is presently studied for the next generation of satellites. To measure the aberrations of such an active telescope, the Shack-Hartmann (SH), and the phase-diversity (PD) are the two wavefront sensors (WFS) considered preferentially because they are able to work with an extended source like the Earths surface, as well as point sources like stars. The RASCASSE project was commissioned by the French spatial agency (CNES) to study the SH and PD sensors for high-performance wavefront sensing. It involved ONERA and Thales Alenia Space (TAS), and LAM. Papers by TAS and LAM on the same project are available in this conference, too [1,2]. The purpose of our work at ONERA was to explore what the best performance both wavefront sensors can achieve in a space optics context. So we first performed a theoretical study in order to identify the main sources of errors and quantify them — then we validated those results experimentally. The outline of this paper follows this approach: we first discuss phase diversity theoretical results, then Shack-Hartmann’s, then experimental results — to finally conclude on each sensor’s performance, and compare their weak and strong points.


MOEMS and Miniaturized Systems XII | 2013

Optical MEMS in space instruments for Earth observation and astronomy

Frederic Zamkotsian; Arnaud Liotard; Patrick Lanzoni; Thierry Viard

Optical MEMS could be major candidates for designing future generation of space instruments. In addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. We have listed new functions associated with several types of MEMS. Instrumental applications are derived and we propose two promising concepts using object selection and spectral tailoring techniques. In Earth Observation instruments, observation of scenes including bright sources leads to an important degradation of the recorded signal. We propose a new concept to remove dynamically the bright sources and obtain a field of view (FOV) with an optically enhanced SNR. Our concept consists in replacing the plain slit in classical designs by an active row of MOEMS. Experimental demonstration of this concept has been conducted on a dedicated bench: a scene with a contiguous bright area has been focused on a micromirror array and imaged on a CCD detector. After the programmable slit, the straylight issued from the bright zone is polluting the scene; the micromirrors located on the bright area are switched off, removing almost completely the straylight in the instrument. In Astronomy and Earth Observation, we propose an innovative reconfigurable instrument: a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array. The FOV is linear and each point spectrum could be modified dynamically along the second direction. A demonstrator has been designed and its realization is under way for testing the unique performances of this instrument.


Proceedings of SPIE | 2012

Space active optics: performance of a deformable mirror for in-situ wave-front correction in space telescopes

Marie Laslandes; Claire Hourtoule; Emmanuel Hugot; Marc Ferrari; Céline Lopez; Christophe Devilliers; Arnaud Liotard; Frederic Chazallet

MADRAS (Mirror Active, Deformable and Regulated for Applications in Space) project aims at demonstrating the interest of Active Optics for space applications. We present the prototype of a 24 actuators, 100 mm diameter deformable mirror to be included in a space telescopes pupil relay to compensate for large lightweight primary mirror deformation. The mirror design has been optimized with Finite Element Analysis and its experimental performance characterized in representative conditions. The developed deformable mirror provides an efficient wave-front correction with a limited number of actuators and a design fitting space requirements.


International Conference on Space Optics 2014 | 2017

Wave-front sensing for space active optics: Rascasse project

M. Carlavan; Frédéric Falzon; Vincent Michau; Laurent M. Mugnier; Céline Engel; Marc Ferrari; Emmanuel Hugot; Arnaud Liotard; Marc Bernot; Thierry Fusco; Aurélie Montmerle-Bonnefois; C. Escolle; Thierry Bret-Dibat; David Laubier; Bruno Cugny; Zoran Sodnik; Nikos Karafolas

The payloads for Earth Observation and Universe Science are currently based on very stiff opto-mechanical structures with very tight tolerances. The introduction of active optics in such an instrument would relax the constraints on the thermo-mechanical architecture and on the mirrors polishing. A reduction of the global mass/cost of the telescope is therefore expected. Active optics is based on two key-components: the wave-front sensor and the wave-front corrector.


Proceedings of SPIE | 2015

DMD-based programmable wide field spectrograph for Earth observation

Frederic Zamkotsian; Patrick Lanzoni; Arnaud Liotard; Thierry Viard; Vincent Costes; Philippe-Jean Hébert

In Earth Observation, Universe Observation and Planet Exploration, scientific return could be optimized in future missions using MOEMS devices. In Earth Observation, we propose an innovative reconfigurable instrument, a programmable wide-field spectrograph where both the FOV and the spectrum could be tailored thanks to a 2D micromirror array (MMA). For a linear 1D field of view (FOV), the principle is to use a MMA to select the wavelengths by acting on intensity. This component is placed in the focal plane of a first grating. On the MMA surface, the spatial dimension is along one side of the device and for each spatial point, its spectrum is displayed along the perpendicular direction: each spatial and spectral feature of the 1D FOV is then fully adjustable dynamically and/or programmable. A second stage with an identical grating recomposes the beam after wavelengths selection, leading to an output tailored 1D image. A mock-up has been designed, fabricated and tested. The micromirror array is the largest DMD in 2048 x 1080 mirrors format, with a pitch of 13.68μm. A synthetic linear FOV is generated and typical images have been recorded o at the output focal plane of the instrument. By tailoring the DMD, we could modify successfully each pixel of the input image: for example, it is possible to remove bright objects or, for each spatial pixel, modify the spectral signature. The very promising results obtained on the mock-up of the programmable wide-field spectrograph reveal the efficiency of this new instrument concept for Earth Observation.


Proceedings of SPIE | 2012

Optical MEMS for space spectro-imagers

Arnaud Liotard; Frederic Zamkotsian; Wilfried Noell; Thierry Viard; Marco Freire; Benedikt Guldimann; Stefan Kraft

In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the Digital Mirror Device (DMD) from Texas Instruments (TI), the micro-deformable mirrors, the Programmable Micro Diffraction Grating and the tiltable micro-mirrors. Among 20-30 MEMS-based payloads concepts, two concepts are selected. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectro-imager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a TI’s DMD component. The first diffractive element spreads the spectrum. A micro-mirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.


Proceedings of SPIE | 2005

Deformable mirrors for the FALCON concept

M. Puech; Fanny Chemla; Philippe Laporte; Pascal Jagourel; Eric Gendron; F. Hammer; Francois Assemat; Jean-Marc Conan; T. Fusco; Arnaud Liotard; Frederic Zamkotsian

FALCON is an original concept for a next generation instrument which could be used on the ESO Very Large Telescope (VLT) and on the future Extremely Large Telescopes (ELT). It is a multi-objects integral field spectrograph with multiple small integral field units (IFUs). Each of them integrates a tiny adaptive optics system coupled with atmospheric tomography to solve the sky coverage problem. This therefore allows to reach spatial (0.15 - 0.25 arcsec) and spectral (R>=5000) resolutions suitable for distant galaxy studies in the 0.8-1.8 μm wavelength range. In the FALCON concept, the adaptive optics correction is only applied on small and discrete areas selected within a large field. This approach implies to develop miniaturized devices for wavefront correction such as deformable mirrors (DM) and wavefront sensors (WFS). We draw up here the main high level specifications for this instrument, that we derive in a first set of opto-mechanical DM requirements including the state of the art of DM technologies.

Collaboration


Dive into the Arnaud Liotard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Hugot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge