Arnaud Mazurier
University of Poitiers
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnaud Mazurier.
Nature | 2006
Roberto Macchiarelli; Luca Bondioli; André Debénath; Arnaud Mazurier; Jean-François Tournepiche; Wendy Birch; M. Christopher Dean
Growth and development are both fundamental components of demographic structure and life history strategy. Together with information about developmental timing they ultimately contribute to a better understanding of Neanderthal extinction. Primate molar tooth development tracks the pace of life history evolution most closely, and tooth histology reveals a record of birth as well as the timing of crown and root growth. High-resolution micro-computed tomography now allows us to image complex structures and uncover subtle differences in adult tooth morphology that are determined early in embryonic development. Here we show that the timing of molar crown and root completion in Neanderthals matches those known for modern humans but that a more complex enamel–dentine junction morphology and a late peak in root extension rate sets them apart. Previous predictions about Neanderthal growth, based only on anterior tooth surfaces, were necessarily speculative. These data are the first on internal molar microstructure; they firmly place key Neanderthal life history variables within those known for modern humans.
Nature | 2010
Abderrazak El Albani; Stefan Bengtson; Donald E. Canfield; Andrey Bekker; Roberto Macchiarelli; Arnaud Mazurier; Emma U. Hammarlund; Philippe Boulvais; Jean-Jacques Dupuy; Claude Fontaine; Franz T. Fürsich; François Gauthier-Lafaye; Philippe Janvier; Emmanuelle Javaux; Frantz Ossa Ossa; Anne-Catherine Pierson-Wickmann; Armelle Riboulleau; Paul Sardini; Daniel Vachard; Martin Whitehouse; Alain Meunier
The evidence for macroscopic life during the Palaeoproterozoic era (2.5–1.6 Gyr ago) is controversial. Except for the nearly 2-Gyr–old coil-shaped fossil Grypania spiralis, which may have been eukaryotic, evidence for morphological and taxonomic biodiversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6–1.0 Gyr). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization. The Gabon fossils, occurring after the 2.45–2.32-Gyr increase in atmospheric oxygen concentration, may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion.
Journal of Human Evolution | 2008
Anthony J. Olejniczak; Tanya M. Smith; Robin N. M. Feeney; Roberto Macchiarelli; Arnaud Mazurier; Luca Bondioli; Antonio Rosas; Javier Fortea; Marco de la Rasilla; Antonio García-Tabernero; Jakov Radovčić; Matthew M. Skinner; Michel Toussaint; Jean-Jacques Hublin
The thickness of dental enamel is often discussed in paleoanthropological literature, particularly with regard to differences in growth, health, and diet between Neandertals and modern humans. Paleoanthropologists employ enamel thickness in paleodietary and taxonomic studies regarding earlier hominins, but variation in enamel thickness within the genus Homo has not been thoroughly explored despite its potential to discriminate species and its relevance to studies of growth and development. Radiographic two-dimensional studies indicate that Neandertal molar enamel is thin relative to the thick enamel of modern humans, although such methods have limited accuracy. Here we show that, measured via accurate high-resolution microtomographic imaging, Neandertal molar enamel is absolutely and relatively thinner than modern human enamel at most molar positions. However, this difference relates to the ratio of coronal dentine volume to total crown volume, rather than the quantity of enamel per se. The absolute volume of Neandertal molar enamel is similar to that of modern humans, but Neandertal enamel is deposited over a larger volume of coronal dentine, resulting in lower average (and relative) enamel thickness values. Sample sizes do not permit rigorous intragroup comparisons, but Neandertal molar tissue proportions evince less variation than the modern human sample. Differences in three- and two-dimensional enamel thickness data describing Neandertal molars may be explained by dimensional reduction. Although molar tissue proportions distinguish Neanderthals from recent Homo sapiens, additional study is necessary to assess trends in tissue proportions in the genus Homo throughout the Pleistocene.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Yutaka Kunimatsu; Masato Nakatsukasa; Yoshihiro Sawada; Tetsuya Sakai; Masayuki Hyodo; Hironobu Hyodo; Tetsumaru Itaya; Hideo Nakaya; Haruo Saegusa; Arnaud Mazurier; Mototaka Saneyoshi; Hiroshi Tsujikawa; Ayumi Yamamoto; Emma Mbua
Extant African great apes and humans are thought to have diverged from each other in the Late Miocene. However, few hominoid fossils are known from Africa during this period. Here we describe a new genus of great ape (Nakalipithecus nakayamai gen. et sp. nov.) recently discovered from the early Late Miocene of Nakali, Kenya. The new genus resembles Ouranopithecus macedoniensis (9.6–8.7 Ma, Greece) in size and some features but retains less specialized characters, such as less inflated cusps and better-developed cingula on cheek teeth, and it was recovered from a slightly older age (9.9–9.8 Ma). Although the affinity of Ouranopithecus to the extant African apes and humans has often been inferred, the former is known only from southeastern Europe. The discovery of N. nakayamai in East Africa, therefore, provides new evidence on the origins of African great apes and humans. N. nakayamai could be close to the last common ancestor of the extant African apes and humans. In addition, the associated primate fauna from Nakali shows that hominoids and other non-cercopithecoid catarrhines retained higher diversity into the early Late Miocene in East Africa than previously recognized.
PLOS ONE | 2014
Abderrazak El Albani; Stefan Bengtson; Donald E. Canfield; Amelie Riboulleau; Claire Rollion Bard; Roberto Macchiarelli; Lauriss Ngombi Pemba; Emma U. Hammarlund; Alain Meunier; Idalina Moubiya Mouélé; Karim Benzerara; Sylvain Bernard; Philippe Boulvais; Marc Chaussidon; Christian Cesari; Claude Fontaine; Ernest Chi-Fru; Juan Manual Garcia Ruiz; François Gauthier-Lafaye; Arnaud Mazurier; Anne Catherine Pierson-Wickmann; Olivier J. Rouxel; Alain Trentesaux; Marco Vecoli; Gerard J M Versteegh; Lee White; Martin J. Whitehouse; Andrey Bekker
The Paleoproterozoic Era witnessed crucial steps in the evolution of Earths surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Journal of Human Evolution | 2009
Priscilla Bayle; José Braga; Arnaud Mazurier; Roberto Macchiarelli
The assessment of the degree of similarity or difference between Neanderthals and modern humans in their patterns of dental development remains a controversial matter. Here we report results from the microtomographic-based (SR-microCT) high-resolution structural investigation of the maxilla and mandible of the Neanderthal child from Roc de Marsal, Dordogne, France (likely from OIS 5a). Following their virtual extraction and 3D rendering, we assessed the maturational stage of each of the 41 dental elements (20 deciduous and 21 permanent) forming its mixed dentition. By using a Bayesian approach, we calculated the probability that its deciduous and permanent mandibular sequences are found within the extant human variation as illustrated by a tomographic CT-based sub-sample of 32 children (deciduous dentition) and a panoramic radiographic- and CT-based whole sample of 343 living children (permanent dentition). Results show that neither the deciduous nor the permanent mandibular sequences displayed by Roc de Marsal are precisely found within our modern comparative files. In both sequences, the most influential factor is represented by a slight discrepancy in the Neanderthal child between the stage of mineralization of the first molar, which is proportionally advanced, and the maturational level reached by its incisors, which are proportionally delayed. Following a quantitative volumetric analysis of the deciduous teeth, we suggest that this characteristic may be related to differences between Neanderthals and modern humans in absolute dental size and relative size proportions between front and cheek teeth, as well as to structural differences in dental tissue proportions.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Priscilla Bayle; Roberto Macchiarelli; Erik Trinkaus; Cidalia Duarte; Arnaud Mazurier; João Zilhão
Neandertals differ from recent and terminal Pleistocene human populations in their patterns of dental development, endostructural (internal structure) organization, and relative tissue proportions. Although significant changes in craniofacial and postcranial morphology have been found between the Middle Paleolithic and earlier Upper Paleolithic modern humans of western Eurasia and the terminal Pleistocene and Holocene inhabitants of the same region, most studies of dental maturation and structural morphology have compared Neandertals only to later Holocene humans. To assess whether earlier modern humans contrasted with later modern populations and possibly approached the Neandertal pattern, we used high-resolution microtomography to analyze the remarkably complete mixed dentition of the early Upper Paleolithic (Gravettian) child from Abrigo do Lagar Velho, Portugal, and compared it to a Neandertal sample, the late Upper Paleolithic (Magdalenian) child of La Madeleine, and a worldwide extant human sample. Some aspects of the dental maturational pattern and tooth endostructural organization of Lagar Velho 1 are absent from extant populations and the Magdalenian specimen and are currently documented only among Neandertals. Therefore, a simple Neandertal versus modern human dichotomy is inadequate to accommodate the morphostructural and developmental variation represented by Middle Paleolithic and earlier Upper Paleolithic populations. These data reinforce the complex nature of Neandertal-modern human similarities and differences, and document ongoing human evolution after the global establishment of modern human morphology.
American Journal of Physical Anthropology | 2009
Priscilla Bayle; José Braga; Arnaud Mazurier; Roberto Macchiarelli
Affinities and differences in dental maturational patterns between modern humans and Neanderthals remain a matter of discussion. In particular, deciduous teeth are rare for Late Pleistocene humans, and few entire sequences have been detailed for their developmental status. Here, we report the results from the 3D virtual reconstruction and structural analysis of the deciduous lower dentition (nine teeth in situ) of the child from La Madeleine (LM4), France, the first Upper Paleolithic specimen detailed so far by means of high-resolution microtomography (microCT). With respect to the modern dental developmental standards, age at death of this individual is now more likely estimated within the interval 3-4 years. LM4 lacks the slight discrepancy between a proportionally advanced stage of mineralization of the deciduous first molar and a relatively delayed maturational level of the incisors, which is found in Neanderthals (Bayle et al.: J Hum Evol 56 [2009] 66-75). By using a Bayesian approach, we calculated the probability that its maturational sequence is found within the extant human variation as represented by a tomographic (CT) reference sample of 45 children scored according to the same protocol (Liversidge and Molleson: Am J Phys Anthropol 123 [2004] 172-180). Results show that the specific sequence of this Magdalenian individual is found three times in the comparative sample included in this study. LM4 absolute tooth size and relative dental tissue proportions are close to the modern human figures (characterized by proportionally reduced dentine volumes) and lie systematically below the values shown by the Neanderthal child from Roc de Marsal, France (OIS 5a).
Journal of Anatomy | 2010
Alexandra Houssaye; Arnaud Mazurier; Anthony Herrel; Virginie Volpato; Paul Tafforeau; Renaud Boistel; Vivian de Buffrénil
The histological study of vertebrae in extant squamates shows that the internal vertebral structure in this group differs from that of other tetrapods. Squamate vertebrae are lightly built and basically composed of two roughly concentric osseous tubes – one surrounding the neural canal and the other constituting the peripheral cortex of the vertebra – connected by few thin trabeculae. This structure, which characteristically evokes that of a tubular bone, results from a peculiar remodelling process characterised by an imbalance between local bone resorption and redeposition; in both periosteal and endosteo‐endochondral territories, bone is extensively resorbed but not reconstructed in the same proportion by secondary deposits. This process is particularly intense in the deep region of the centrum, where originally compact cortices are made cancellous, and where the endochondral spongiosa is very loose. This remodelling process starts at an early stage of development and remains active throughout subsequent growth. The growth of squamate centra is also strongly asymmetrical, with the posterior (condylar) part growing much faster than the anterior (cotylar) part. Preliminary analyses testing for associations between vertebral structure and habitat use suggest that vertebrae of fossorial taxa are denser than those of terrestrial taxa, those in aquatic taxa being of intermediate density. However, phylogenetically informed analyses do not corroborate these findings, thus suggesting a strong phylogenetic signal in the data. As our analyses demonstrate that vertebrae in snakes are generally denser than those of lizards sensu stricto, this may drive the presence of a phylogenetic signal in the data. More comprehensive sampling of fossorial and aquatic lizards is clearly needed to more rigorously evaluate these patterns.
Geodiversitas | 2009
Roberto Macchiarelli; Arnaud Mazurier; Bernhard Illerhaus; Clément Zanolli
ABSTRACT Dental enamel thickness is commonly listed among the diagnostic features for taxonomic assessment and phylogenetic reconstruction in the study of fossil hominids, and is widely used as an indicator of dietary habits and palaeoenvironmental conditions. However, little quantitative information is currently available on its topographic variation in deciduous crowns of fossil primates. By means of high-resolution microtomography, we investigated the inner structural morphology of the mixed lower dentition of Ouranopithecus macedoniensis, a late Miocene large-bodied ape from Macedonia, Greece. With respect to the extant African apes and Homo, O. macedoniensis shows a significant difference in occlusal enamel thickness between the relatively thin deciduous second molar and the absolutely thick-enamelled permanent first molar.