Arnaud Parcellier
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnaud Parcellier.
European Journal of Immunology | 2004
François Ghiringhelli; Nicolas Larmonier; Elise Schmitt; Arnaud Parcellier; Dominique Cathelin; Carmen Garrido; Bruno Chauffert; Eric Solary; Bernard Bonnotte; François Martin
We investigated the mechanisms of immune tolerance raised by tumors by comparing immunogenic and tolerogenic tumor cell clones isolated from a rat colon carcinoma. When injected into syngeneichosts, the immunogenic REGb cells yield tumors that are rejected, while the tolerogenic PROb cells yield progressive tumors and inhibit the regression of REGb tumors. We show here that PROb tumor volume is correlated with an expansion of CD4+CD25+ regulatory T lymphocytes in lymphoid tissues. These cells delay in vivo the rejection of REGb tumors and inhibit in vitro T cell‐mediated immune responses against REGb cells through a mechanism that requires cell contact between effector and regulatory T cells and involves TGF‐β. While total T cells fromPROb tumor‐bearing rats yield no apparent anti‐tumor immune response, depletion of CD25+ T cells restores this reactivity. A single administration of cyclophosphamide depletes CD4+CD25+ T cells in PROb tumor‐bearing animals, delays the growth of PROb tumors, and cures rats bearing established PROb tumors when followed by an immunotherapy which has no curative effect when administered alone. These results demonstrate the role of CD4+CD25+ regulatory T cells in tumor‐induced immune tolerance and the interest of regulatory T cell depletion to sensitize established tumors to immunotherapy.
Journal of Experimental Medicine | 2005
François Ghiringhelli; Pierre Emmanuel Puig; Stephan Roux; Arnaud Parcellier; Elise Schmitt; Eric Solary; Guido Kroemer; François Martin; Bruno Chauffert; Laurence Zitvogel
The mechanisms through which regulatory T cells accumulate in lymphoid organs of tumor-bearing hosts remain elusive. Our experiments indicate that the accumulation of CD4+CD25+ regulatory T cells (T reg cells) expressing FoxP3 and exhibiting immunosuppressive function originates from the proliferation of naturally occurring CD25+ T cells and requires signaling through transforming growth factor (TGF)–β receptor II. During tumor progression, a subset of dendritic cells (DCs) exhibiting a myeloid immature phenotype is recruited to draining lymph nodes. This DC subset selectively promotes the proliferation of T reg cells in a TGF-β–dependent manner in mice and rats. Tumor cells are necessary and sufficient to convert DCs into regulatory cells that secrete bioactive TGF-β and stimulate T reg cell proliferation. In conclusion, tumor expansion can stimulate T reg cells via a specific DC subset.
Molecular and Cellular Biology | 2003
Arnaud Parcellier; Elise Schmitt; Sandeep Gurbuxani; Daphné Seigneurin-Berny; Alena Pance; Aurélie Chantôme; Stéphanie Plenchette; Saadi Khochbin; Eric Solary; Carmen Garrido
ABSTRACT HSP27 is an ATP-independent chaperone that confers protection against apoptosis through various mechanisms, including a direct interaction with cytochrome c. Here we show that HSP27 overexpression in various cell types enhances the degradation of ubiquitinated proteins by the 26S proteasome in response to stressful stimuli, such as etoposide or tumor necrosis factor alpha (TNF-α). We demonstrate that HSP27 binds to polyubiquitin chains and to the 26S proteasome in vitro and in vivo. The ubiquitin-proteasome pathway is involved in the activation of transcription factor NF-κB by degrading its main inhibitor, I-κBα. HSP27 overexpression increases NF-κB nuclear relocalization, DNA binding, and transcriptional activity induced by etoposide, ΤNF-α, and interleukin 1β. HSP27 does not affect I-κBα phosphorylation but enhances the degradation of phosphorylated I-κBα by the proteasome. The interaction of HSP27 with the 26S proteasome is required to activate the proteasome and the degradation of phosphorylated I-κBα. A protein complex that includes HSP27, phosphorylated I-κBα, and the 26S proteasome is formed. Based on these observations, we propose that HSP27, under stress conditions, favors the degradation of ubiquitinated proteins, such as phosphorylated I-κBα. This novel function of HSP27 would account for its antiapoptotic properties through the enhancement of NF-κB activity.
Oncogene | 2003
Sandeep Gurbuxani; Elise Schmitt; Céline Candé; Arnaud Parcellier; Arlette Hammann; Eric Daugas; Ilektra Kouranti; Chris Spahr; Alena Pance; Guido Kroemer; Carmen Garrido
Heat shock protein 70 (HSP70) can inhibit apoptosis by neutralizing and interacting with apoptosis-inducing factor (AIF), a mitochondrial flavoprotein that translocates upon apoptosis induction to the nucleus, via the cytosol. Here, we show that only members of the HSP70 family interact with AIF. Systematic deletion mapping revealed the existence of three distinct functional regions in the AIF protein: (1) a region between amino acids 150 and 228 that binds HSP70, (2) a domain between residues 367 and 459 that includes a nuclear localization sequence (NLS) and (3) a C-terminal domain beyond residue 567 required for its chromatin-condensing activity. Deletion of the 150–268 domain completely abolished HSP70 binding and facilitated the nuclear import of AIF, resulting in a gain-of-function phenotype with enhanced AIF-mediated chromatin condensation as compared to wild-type AIF. This gain-of-function phenotype was observed in wild-type control cells (which express low but significant levels of HSP70), yet was lost when AIFΔ150–268 was introduced into HSP70 knockout cells, underscoring the functional importance of the AIF–HSP70 interaction. Altogether, our data demonstrate that AIF inhibition by HSP70 involves cytosolic retention of AIF. Moreover, it appears that endogenous HSP70 protein levels are sufficiently elevated to modulate the lethal action of AIF.
Cell Cycle | 2003
Carmen Garrido; Elise Schmitt; Céline Candé; Nicola Vahsen; Arnaud Parcellier; Guido Kroemer
Stress or heat shock proteins (HSPs) such as HSP27 and HSP70 are expressed in response to a wide variety of physiological and environmental insults including heat, reactive oxygen species or anticancer drugs. Their overexpression allows cells to survive to otherwise lethal conditions. Several different mechanisms may account for the cytoprotective activity of HSP27 and HSP70. First, both proteins are powerful chaperones. Second, both inhibit key effectors of the apoptotic machinery including the apoptosome, the caspase activation complex (both HSP27 and HSP70), and apoptosis inducing factor (only HSP70). Third, they both play a role in the proteasome-mediated degradation of apoptosis-regulatory proteins. HSP27 and HSP70 may participate in oncogenesis, as suggested by the fact that overexpression of heat shock proteins can increase the tumorigenic potential of tumor cells. The down-regulation or selective inhibition of HSP70 might constitute a valuable strategy for the treatment of cancer.
The FASEB Journal | 2006
Arnaud Parcellier; Mathilde Brunet; Elise Schmitt; Edwige Col; Celine Didelot; Arlette Hammann; Keiko Nakayama; Keiichi I. Nakayama; Saadi Khochbin; Eric Solary; Carmen Garrido
Stress‐inducible HSP27 protects cells from death through various mechanisms. We have recently demonstrated that HSP27 can also enhance the degradation of some proteins through the proteasomal pathway. Here, we show that one of these proteins is the cyc1in‐dependent kinase (Cdk) inhibitor p27Kip1. The ubiquitination and degradation of this protein that favors progression through the cell cyc1e was previously shown to involve either a Skp2‐dependent mechanism, i.e., at the S‐/G2‐transition, or a KPC (Kip1 ubiquitination‐promoting complex)‐dependent mechanism, i.e., at the G0/G1 transition. In this work, we demonstrate that, in response to serum depletion, p27Kip1 cellular content first increases then progressively decreases as cells begin to die. In this stressful condition, HSP27 favors p27Kip1 ubiquitination and degradation by the proteasome. A similar observation was made in response to stress induced by the NO donor glyceryl trinitrate (GTN). HSP27‐mediated ubiquitination of p27Kip1 does not require its phosphorylation on Thr187 or Ser‐10, nor does it depend on the SCFSkp2 ubiquitin ligase E3 complex. It facilitates the G1/S transition, which suggests that, in stressful conditions, HSP27 might render quiescent cells competent to re‐enter the cell cyc1e.—Parcellier, A., Brunet, M., Schmitt, E., Col, E., Didelot, C., Hammann, A., Nakayama, K., Nakayama, K., Khochbin, S., Solary, E., Garrido, C. HSP27 favors ubiquitination and proteasomal degradation of p27Kip1 and helps S‐phase re‐entry in stressed cells. FASEB J. 20, E281–E293 (2006)
Oncogene | 2001
Sandeep Gurbuxani; Jean Marie Bruey; Annie Fromentin; Nicolas Larmonier; Arnaud Parcellier; Marja Jäättelä; François Martin; Eric Solary; Carmen Garrido
Expression of inducible heat shock protein 70 (HSP70) in tumor cells has been proposed to enhance their immunogenicity. However, HSP70 has also been demonstrated to prevent tumor cell death, a key process for the development of tumor cell immunogenicity. In the present study, we investigated the influence of the HSP70 protein level on PRO colon cancer cell growth and immunogenicity in syngeneic BDIX rats and nude mice. These cells have a basal expression of HSP70 which can be substantially increased by heat shock. When injected subcutaneously in syngeneic animals, PRO cells do not induce any detectable immune response and give rise to progressive, metastatic and lethal tumors. Stable transfection of an anti-sense hsp70 cDNA in PRO cells (PRO-70AS cells) strongly decreased HSP70 expression and sensitized cell-free extracts to cytochrome c/dATP-mediated activation of caspases. Subcutaneous injection of PRO-70AS cells induced tumors that rapidly regressed in syngeneic rats while they grew normally in nude mice. Syngeneic rats injected with PRO-70AS cells became protected against a further challenge with PRO cells. The tumor-specific immune response induced by HSP70-depleted PRO-70AS cells was associated with an increased rate of cell death in vivo. These PRO-70AS cells were also more sensitive to NO-mediated, caspase-dependent, macrophage cytotoxicity in vivo. Altogether, these results indicate that reduced level of HSP70 expression in PRO- colon cancer cells results in the generation of a specific immune response by promoting cell death in vivo.
Oncogene | 2002
Nicolas Larmonier; Claire Billerey; Cédric Rébé; Arnaud Parcellier; Monique Moutet; Annie Fromentin; Guido Kroemer; Carmen Garrido; Eric Solary; François Martin; Bernard Bonnotte
REGb cell line, a highly immunogenic tumor cell variant isolated from a rat colon cancer, yields regressive tumors when injected into syngeneic hosts. We previously demonstrated that REGb tumor immunogenicity was related to the capacity of releasing dead cells in vivo. Also, in vitro, REGb cell monolayers release dead cells, especially when cultured in serum-free medium. In the current study, we show that the release of dead cells results from an atypical death process associating features of necrosis and apoptosis. In spite of features considered as hallmarks of caspase-dependent apoptosis, including chromatin fragmentation and DNA oligonucleosomal cleavage, caspases are not activated and caspase inhibitors are ineffective to prevent REGb cell death. In contrast with a number of other types of cell death, the spontaneous death of REGb cells in culture depends on de novo protein synthesis as this death is blocked by low doses of the mRNA translation inhibitor cycloheximide. This unusual mode of cell death that associates necrotic and apoptotic features could provide optimal conditions for triggering a specific immune response.
Biochemical and Biophysical Research Communications | 2003
Arnaud Parcellier; Sandeep Gurbuxani; Elise Schmitt; Eric Solary; Carmen Garrido
Antioxidants & Redox Signaling | 2005
Arnaud Parcellier; Elise Schmitt; Mathilde Brunet; Arlette Hammann; Eric Solary; Carmen Garrido