Arnaud Sentis
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnaud Sentis.
Oecologia | 2012
Arnaud Sentis; Jean-Louis Hemptinne; Jacques Brodeur
Temperature is one of the most important environmental parameters influencing all the biological processes and functions of poikilothermic organisms. Although extensive research has been carried out to evaluate the effects of temperature on animal life histories and to determine the upper and lower temperature thresholds as well as the optimal temperatures for survival, development, and reproduction, few studies have investigated links between thermal window, metabolism, and trophic interactions such as predation. We developed models and conducted laboratory experiments to investigate how temperature influences predator–prey interaction strengths (i.e., functional response) using a ladybeetle larva feeding on aphid prey. As predicted by the metabolic theory of ecology, we found that handling time exponentially decreases with warming, but—in contrast with this theory—search rate follows a hump-shaped relationship with temperature. An examination of the model reveals that temperature thresholds for predation depend mainly on search rate, suggesting that predation rate is primarily determined by searching activities and secondly by prey handling. In contrast with prior studies, our model shows that per capita short-term predator–prey interaction strengths and predator energetic efficiency (per capita feeding rate relative to metabolism) generally increase with temperature, reach an optimum, and then decrease at higher temperatures. We conclude that integrating the concept of thermal windows in short- and long-term ecological studies would lead to a better understanding of predator–prey population dynamics at thermal limits and allow better predictions of global warming effects on natural ecosystems.
Ecology Letters | 2014
Arnaud Sentis; Jean-Louis Hemptinne; Jacques Brodeur
Revealing the links between species functional traits, interaction strength and food-web structure is of paramount importance for understanding and predicting the relationships between food-web diversity and stability in a rapidly changing world. However, little is known about the interactive effects of environmental perturbations on individual species, trophic interactions and ecosystem functioning. Here, we combined modelling and laboratory experiments to investigate the effects of warming and enrichment on a terrestrial tritrophic system. We found that the food-web structure is highly variable and switches between exploitative competition and omnivory depending on the effects of temperature and enrichment on foraging behaviour and species interaction strength. Our model contributes to identifying the mechanisms that explain how environmental effects cascade through the food web and influence its topology. We conclude that considering environmental factors and flexible food-web structure is crucial to improve our ability to predict the impacts of global changes on ecosystem diversity and stability.
Global Change Biology | 2015
Arnaud Sentis; Julie Morisson; David S. Boukal
Global change affects individual phenotypes and biotic interactions, which can have cascading effects up to the ecosystem level. However, the role of environmentally induced phenotypic plasticity in species interactions is poorly understood, leaving a substantial gap in our knowledge of the impacts of global change on ecosystems. Using a cladoceran-dragonfly system, we experimentally investigated the effects of thermal acclimation, acute temperature change and enrichment on predator functional response and metabolic rate. Using our experimental data, we next parameterized a population dynamics model to determine the consequences of these effects on trophic interaction strength and food-chain stability. We found that (1) predation and metabolic rates of the dragonfly larvae increase with acute warming, (2) warm-acclimated larvae have a higher maximum predation rate than cold-acclimated ones, and (3) long-term interaction strength increases with enrichment but decreases with both acclimation and acute temperatures. Overall, our experimental results show that thermal acclimation can buffer negative impacts of environmental change on predators and increase food-web stability and persistence. We conclude that the effect of acclimation and, more generally, phenotypic plasticity on trophic interactions should not be overlooked if we aim to understand the effects of climate change and enrichment on species interaction strength and food-web stability.
Ecosphere | 2013
Arnaud Sentis; Jean-Louis Hemptinne; Jacques Brodeur
Numerous models have been developed to predict the effect of environmental productivity on the coexistence of prey and predators within the three-species module of intraguild predation. Theoretical models have mainly used Holling Type I and Type II functional response, the latter typically best describing the functional response of a predator. However, no empirical study has simultaneously examined the form of the functional response and the effect of prey density on intraguild interactions. This is surprising considering that the strength of the functional response is crucially important for the stability of simple predator-prey systems and the persistence, sustainability and biodiversity of communities. In this study, we first developed a linear and a nonlinear functional response model for intraguild predators and next used a plant–aphid–predator mesocosm to parameterize the models and test their predictions at different prey densities. As expected, the assumptions of the linear model are not supported by empirical results which lead to systemic overestimation of the predation rate and the intensity of intraguild predation. On the other hand, the predictions of the nonlinear functional response model fit very well with experimental observations mainly because key behavioral characteristics such as handling time are integrated in this model. The nonlinear model is thus a good predictor of intraguild predation and allows a better understanding of how environmental productivity and predator behavior influence the occurrence and outcome of multiple predator interactions.
Global Change Biology | 2017
Arnaud Sentis; Jean-Louis Hemptinne; Jacques Brodeur
Understanding the effects of extreme climatic events on species and their interactions is of paramount importance for predicting and mitigating the impacts of climate change on communities and ecosystems. However, the joint effects of extreme climatic events and species interactions on the behaviour and phenotype of organisms remain poorly understood, leaving a substantial gap in our knowledge on the impacts of climatic change on ecological communities. Using an aphid-ladybeetle system, we experimentally investigated the effects of predators and heat shocks on prey body size, microhabitat use, and transgenerational phenotypic plasticity (i.e., the asexual production of winged offspring by unwinged mothers). We found that (i) aphids were smaller in the presence of predators but larger when exposed to frequent heat shocks; (ii) frequent heat shocks shifted aphid distribution towards the plants apex, but the presence of predators had the opposite effect and dampened the heat-shock effects; and (iii) aphids responded to predators by producing winged offspring, but heat shocks strongly inhibited this transgenerational response to predation. Overall, our experimental results show that heat shocks inhibit phenotypic and behavioural responses to predation (and vice versa) and that such changes may alter trophic interactions, and have important consequences on the dynamics and stability of ecological communities. We conclude that the effects of extreme climatic events on the phenotype and behaviour of interacting species should be considered to understand the effects of climate change on species interactions and communities.
Global Change Biology | 2017
Arnaud Sentis; Charlène Gémard; Baptiste Jaugeon; David S. Boukal
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities.
Ecology Letters | 2017
Arnaud Sentis; Amrei Binzer; David S. Boukal
Body-size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature-size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three-species food chain using a temperature-dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer-resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.
Scientific Reports | 2017
David S. Boukal; Miloš Buřič; Pavel Kozák; Antonín Kouba; Arnaud Sentis
Nonconsumptive predator-driven mortality (NCM), defined as prey mortality due to predation that does not result in prey consumption, is an underestimated component of predator-prey interactions with possible implications for population dynamics and ecosystem functioning. However, the biotic and abiotic factors influencing this mortality component remain largely unexplored, leaving a gap in our understanding of the impacts of environmental change on ecological communities. We investigated the effects of temperature, prey density, and predator diversity and density on NCM in an aquatic food web module composed of dragonfly larvae (Aeshna cyanea) and marbled crayfish (Procambarus fallax f. virginalis) preying on common carp (Cyprinus carpio) fry. We found that NCM increased with prey density and depended on the functional diversity and density of the predator community. Warming significantly reduced NCM only in the dragonfly larvae but the magnitude depended on dragonfly larvae density. Our results indicate that energy transfer across trophic levels is more efficient due to lower NCM in functionally diverse predator communities, at lower resource densities and at higher temperatures. This suggests that environmental changes such as climate warming and reduced resource availability could increase the efficiency of energy transfer in food webs only if functionally diverse predator communities are conserved.
Scientific Reports | 2018
Arnaud Sentis; David S. Boukal
Non-independent interactions among predators can have important consequences for the structure and dynamics of ecological communities by enhancing or reducing prey mortality rate through, e.g., predator facilitation or interference. The multiplicative risk model, traditionally used to detect these emergent multiple predator effects (MPEs), is biased because it assumes linear functional response (FR) and no prey depletion. To rectify these biases, two approaches based on FR modelling have recently been proposed: the direct FR approach and the population-dynamic approach. Here we compare the strengths, limitations and predictions of the three approaches using simulated data sets. We found that the predictions of the direct FR and the multiplicative risk models are very similar and underestimate predation rates when prey density is high or prey depletion is substantial. As a consequence, these two approaches often fail in detecting risk reduction. Finally, parameters estimated with the direct FR approach lack mechanistic interpretation, which limits the understanding of the mechanisms driving multiple predator interactions and potential extension of this approach to more complex food webs. We thus strongly recommend using the population-dynamic approach because it is robust, precise, and provides a scalable mechanistic framework to detect and quantify MPEs.
Global Change Biology | 2013
Arnaud Sentis; Jean-Louis Hemptinne; Jacques Brodeur