Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnauld Belmer is active.

Publication


Featured researches published by Arnauld Belmer.


Molecular Psychiatry | 2012

5-HT(2B) receptors are required for serotonin-selective antidepressant actions.

Silviana Laura Diaz; Stéphane Doly; Nicolas Narboux-Nême; Sébasatien Fernández; Pierre Mazot; Sophie M. Banas; Katia Boutourlinsky; Imane Moutkine; Arnauld Belmer; Anne Roumier; Luc Maroteaux

The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT2B receptors. Conversely, direct agonist stimulation of 5-HT2B receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT2B receptors and (iii) a selective 5-HT2B agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT2B receptors. The 5-HT2B receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT2B receptor should be considered as a new tractable target in the combat against depression.


PLOS ONE | 2009

Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice

Stéphane Doly; Jesus Bertran-Gonzalez; Jacques Callebert; Alexandra Bruneau; Sophie M. Banas; Arnauld Belmer; Katia Boutourlinsky; Denis Hervé; Jean-Marie Launay; Luc Maroteaux

The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA. We show here that 5-HT2B −/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects. These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.


Neuropsychopharmacology | 2011

Deconstructing Antiobesity Compound Action: Requirement of Serotonin 5-HT2B Receptors for Dexfenfluramine Anorectic Effects

Sophie M. Banas; Stéphane Doly; Katia Boutourlinsky; Silvina L. Diaz; Arnauld Belmer; Jacques Callebert; Corinne Collet; Jean-Marie Launay; Luc Maroteaux

The now-banned anorectic molecule, dexfenfluramine, promotes serotonin release through a serotonin transporter-dependent mechanism, and it has been widely prescribed for the treatment of obesity. Previous studies have identified that 5-HT2B receptors have important roles in dexfenfluramine side effects, that is, pulmonary hypertension, plasma serotonin level regulation, and valvulopathy. We thus investigated a putative contribution of 5-HT2B receptors in dexfenfluramine-dependent feeding behavior in mice. Interestingly, the hypophagic response to dexfenfluramine (3–10 mg/kg) observed in wild-type mice (1–4 h) was eliminated in mice lacking 5-HT2B receptors (5-HT2B−/−). These findings were further validated by the lack of hypophagic response to dexfenfluramine in wild-type mice treated with RS127445, a highly selective and potent antagonist (pKi=8.22±0.24). Using microdialysis, we observed that in 5-HT2B−/− awake mice, the dexfenfluramine-induced hypothalamic peak of serotonin release (1 h) was strongly reduced (fourfold) compared with wild type. Moreover, using hypothalamic synaptosomes, we established the serotonergic neuron autonomous properties of this effect: a strong serotonin release was observed upon dexfenfluramine stimulation of synaptosome preparation from wild type but not from mice lacking active 5-HT2B receptors. These findings strongly suggest that activation of presynaptic 5-HT2B receptors is a limiting step in the serotonin transporter dependant-releasing effect of dexfenfluramine, whereas other serotonin receptors act downstream with respect to feeding behavior.


Neuropsychopharmacology | 2015

Mice Lacking the Serotonin Htr2B Receptor Gene Present an Antipsychotic-Sensitive Schizophrenic-Like Phenotype.

Pothitos M. Pitychoutis; Arnauld Belmer; Imane Moutkine; Joëlle Adrien; Luc Maroteaux

Impulsivity and hyperactivity share common ground with numerous mental disorders, including schizophrenia. Recently, a population-specific serotonin 2B (5-HT2B) receptor stop codon (ie, HTR2B Q20*) was reported to segregate with severely impulsive individuals, whereas 5-HT2B mutant (Htr2B−/−) mice also showed high impulsivity. Interestingly, in the same cohort, early-onset schizophrenia was more prevalent in HTR2B Q*20 carriers. However, the putative role of 5-HT2B receptor in the neurobiology of schizophrenia has never been investigated. We assessed the effects of the genetic and the pharmacological ablation of 5-HT2B receptors in mice subjected to a comprehensive series of behavioral test screenings for schizophrenic-like symptoms and investigated relevant dopaminergic and glutamatergic neurochemical alterations in the cortex and the striatum. Domains related to the positive, negative, and cognitive symptom clusters of schizophrenia were affected in Htr2B−/− mice, as shown by deficits in sensorimotor gating, in selective attention, in social interactions, and in learning and memory processes. In addition, Htr2B−/− mice presented with enhanced locomotor response to the psychostimulants dizocilpine and amphetamine, and with robust alterations in sleep architecture. Moreover, ablation of 5-HT2B receptors induced a region-selective decrease of dopamine and glutamate concentrations in the dorsal striatum. Importantly, selected schizophrenic-like phenotypes and endophenotypes were rescued by chronic haloperidol treatment. We report herein that 5-HT2B receptor deficiency confers a wide spectrum of antipsychotic-sensitive schizophrenic-like behavioral and psychopharmacological phenotypes in mice and provide first evidence for a role of 5-HT2B receptors in the neurobiology of psychotic disorders.


Journal of Neurophysiology | 2015

Structural and functional characterization of dendritic arbors and GABAergic synaptic inputs on interneurons and principal cells in the rat basolateral amygdala

Paul M. Klenowski; Matthew J. Fogarty; Arnauld Belmer; Peter G. Noakes; Mark C. Bellingham; Selena E. Bartlett

The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.


PLOS ONE | 2016

Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake.

Masroor Shariff; Maryka Quik; Joan Holgate; Michael Morgan; Omkar L. Patkar; Vincent Tam; Arnauld Belmer; Selena E. Bartlett

Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption.


Frontiers in Behavioral Neuroscience | 2016

Prolonged Consumption of Sucrose in a Binge-Like Manner, Alters the Morphology of Medium Spiny Neurons in the Nucleus Accumbens Shell.

Paul M. Klenowski; Masroor Shariff; Arnauld Belmer; Matthew J. Fogarty; Erica W. H. Mu; Mark C. Bellingham; Selena E. Bartlett

The modern diet has become highly sweetened, resulting in unprecedented levels of sugar consumption, particularly among adolescents. While chronic long-term sugar intake is known to contribute to the development of metabolic disorders including obesity and type II diabetes, little is known regarding the direct consequences of long-term, binge-like sugar consumption on the brain. Because sugar can cause the release of dopamine in the nucleus accumbens (NAc) similarly to drugs of abuse, we investigated changes in the morphology of neurons in this brain region following short- (4 weeks) and long-term (12 weeks) binge-like sucrose consumption using an intermittent two-bottle choice paradigm. We used Golgi-Cox staining to impregnate medium spiny neurons (MSNs) from the NAc core and shell of short- and long-term sucrose consuming rats and compared these to age-matched water controls. We show that prolonged binge-like sucrose consumption significantly decreased the total dendritic length of NAc shell MSNs compared to age-matched control rats. We also found that the restructuring of these neurons resulted primarily from reduced distal dendritic complexity. Conversely, we observed increased spine densities at the distal branch orders of NAc shell MSNs from long-term sucrose consuming rats. Combined, these results highlight the neuronal effects of prolonged binge-like intake of sucrose on NAc shell MSN morphology.


Molecular Pharmacology | 2013

Role of the N-Terminal Region in G Protein–Coupled Receptor Functions: Negative Modulation Revealed by 5-HT2B Receptor Polymorphisms

Arnauld Belmer; Stéphane Doly; Vincent Setola; Sophie M. Banas; Imane Moutkine; Katia Boutourlinsky; Terry P. Kenakin; Luc Maroteaux

The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family.


Addiction Biology | 2017

The antihypertensive drug pindolol attenuates long-term but not short-term binge-like ethanol consumption in mice

Omkar L. Patkar; Arnauld Belmer; Joan Holgate; Josephine R. Tarren; Masroor Shariff; Michael Morgan; Matthew J. Fogarty; Mark C. Bellingham; Selena E. Bartlett; Paul M. Klenowski

Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge‐like ethanol intake and abstinence. Therefore, we used a model of binge–ethanol consumption (drinking‐in‐the‐dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA‐approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long‐term (12 weeks) binge–ethanol intake, compared with short‐term (4 weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta‐adrenergic antagonist and 5‐HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin and norepinephrine‐containing fibres. Pindolol increased spontaneous excitatory post‐synaptic current frequency of BLA principal neurons from long‐term ethanol‐consuming mice but not naïve mice. Additionally, this effect was blocked by the 5‐HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long‐term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast‐tracked into human clinical studies.


Neuroscience Letters | 2016

The effect of varenicline on binge-like ethanol consumption in mice is β4 nicotinic acetylcholine receptor-independent.

Omkar L. Patkar; Arnauld Belmer; Josephine R. Tarren; Joan Holgate; Selena E. Bartlett

BACKGROUND Our laboratory has previously shown that the smoking-cessation agent varenicline, an agonist/partial agonist of α4β2*, α3β4*, α3β2*, α6β2* (* indicates the possibility of additional subunits) and α7 subunits of nicotinic acetylcholine receptors (nAChRs), reduces ethanol consumption in rats only after long-term exposure (12 weeks). As compounds having partial agonistic activity on α3β4* nAChRs were shown to decrease ethanol consumption in rodents, we assessed here the involvement of the β4 subunit in the effect of varenicline in the reduction of short- and long-term binge-like ethanol drinking in mice. METHODS We used the well-validated drinking-in-the-dark (DID) paradigm to model chronic binge-like ethanol drinking in β4-/- and β4+/+ littermate mice and compare the effect of intraperitoneal injection of varenicline (2mg/kg) on ethanol intake following short- (4 weeks) or long-term (12 weeks) exposure. RESULTS Drinking pattern and amounts of ethanol intake were similar in β4-/- and β4+/+ mice. Interestingly, our results showed that varenicline reduces ethanol consumption following short- and long-term ethanol exposure in the DID. Although the effect of varenicline on the reduction of ethanol consumption was slightly more pronounced in β4-/- mice than their β4+/+ littermates no significant differences were observed between genotypes. CONCLUSION In mice, varenicline reduces binge-like ethanol consumption both after short- and long-term exposure in the DID and this effect is independent of β4 nAChR subunit.

Collaboration


Dive into the Arnauld Belmer's collaboration.

Top Co-Authors

Avatar

Selena E. Bartlett

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Omkar L. Patkar

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Masroor Shariff

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul M. Klenowski

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Joan Holgate

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Josephine R. Tarren

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Morgan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Erica W. H. Mu

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge