Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnd Schaefer is active.

Publication


Featured researches published by Arnd Schaefer.


Circulation | 2006

Intracoronary Bone Marrow Cell Transfer After Myocardial Infarction Eighteen Months’ Follow-Up Data From the Randomized, Controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) Trial

Gerd Peter Meyer; Kai C. Wollert; Joachim Lotz; Jan Steffens; Peter Lippolt; Stephanie Fichtner; Hartmut Hecker; Arnd Schaefer; Lubomir Arseniev; Bernd Hertenstein; Arnold Ganser; Helmut Drexler

Background— Intracoronary transfer of autologous bone marrow cells (BMCs) may enhance recovery of left ventricular (LV) function in patients after acute myocardial infarction (AMI). However, clinical studies addressing the effects of BMCs after AMI have covered only limited time frames ranging from 3 to 6 months. The critical question of whether BMC transfer can have a sustained impact on LV function remains unanswered. Methods and Results– After percutaneous coronary intervention with stent implantation (PCI) of the infarct-related artery, 60 patients were randomized 1:1 to a control group with optimal postinfarction therapy and a BMC transfer group that also received an intracoronary BMC infusion 4.8±1.3 days after PCI. Cardiac MRI was performed 3.5±1.5 days, 6±1 months, and 18±6 months after PCI. BMC transfer was not associated with adverse clinical events. In the control group, mean global LV ejection fraction increased by 0.7 and 3.1 percentage points after 6 and 18 months, respectively. LV ejection fraction in the BMC transfer group increased by 6.7 and 5.9 percentage points. The difference in LVEF improvement between groups was significant after 6 months but not after 18 months (P=0.27). The speed of LV ejection fraction recovery over the course of 18 months was significantly higher in the BMC transfer group (P=0.001). Conclusions– In this study, a single dose of intracoronary BMCs did not provide long-term benefit on LV systolic function after AMI compared with a randomized control group; however, the study suggests an acceleration of LV ejection fraction recovery after AMI by BMC therapy.


Cell | 2007

A Cathepsin D-Cleaved 16 kDa Form of Prolactin Mediates Postpartum Cardiomyopathy

Denise Hilfiker-Kleiner; Karol A. Kamiński; Edith Podewski; Tomasz Bonda; Arnd Schaefer; Karen Sliwa; Olaf Forster; Anja Quint; Ulf Landmesser; Carola Doerries; Maren Luchtefeld; Valeria Poli; Michael D. Schneider; Jean-Luc Balligand; Fanny Desjardins; Aftab A. Ansari; Ingrid Struman; Ngoc Quynh Nhu Nguyen; Nils H. Zschemisch; Gunnar Klein; Gerd Heusch; Rainer Schulz; Andres Hilfiker; Helmut Drexler

Postpartum cardiomyopathy (PPCM) is a disease of unknown etiology and exposes women to high risk of mortality after delivery. Here, we show that female mice with a cardiomyocyte-specific deletion of stat3 develop PPCM. In these mice, cardiac cathepsin D (CD) expression and activity is enhanced and associated with the generation of a cleaved antiangiogenic and proapoptotic 16 kDa form of the nursing hormone prolactin. Treatment with bromocriptine, an inhibitor of prolactin secretion, prevents the development of PPCM, whereas forced myocardial generation of 16 kDa prolactin impairs the cardiac capillary network and function, thereby recapitulating the cardiac phenotype of PPCM. Myocardial STAT3 protein levels are reduced and serum levels of activated CD and 16 kDa prolactin are elevated in PPCM patients. Thus, a biologically active derivative of the pregnancy hormone prolactin mediates PPCM, implying that inhibition of prolactin release may represent a novel therapeutic strategy for PPCM.


Circulation | 2004

Statin-Induced Improvement of Endothelial Progenitor Cell Mobilization, Myocardial Neovascularization, Left Ventricular Function, and Survival After Experimental Myocardial Infarction Requires Endothelial Nitric Oxide Synthase

Ulf Landmesser; Niels Engberding; Ferdinand Hermann Bahlmann; Arnd Schaefer; Antje Wiencke; André Heineke; Stephan Spiekermann; Denise Hilfiker-Kleiner; Christian Templin; Daniel Kotlarz; Maja Mueller; Martin Fuchs; Burkhard Hornig; Hermann Haller; Helmut Drexler

Background—Endothelial nitric oxide (eNO) bioavailability is severely reduced after myocardial infarction (MI) and in heart failure. Statins enhance eNO availability by both increasing eNO production and reducing NO inactivation. We therefore studied the effect of statin treatment on eNO availability after MI and tested its role for endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular (LV) dysfunction, remodeling, and survival after MI. Methods and Results—Wild-type (WT) and eNO synthase (eNOS)−/− mice with extensive anterior MI were randomized to treatment with vehicle (V) or atorvastatin (Ator, 50 mg/kg QD by gavage) for 4 weeks starting on day 1 after MI. Ator markedly improved endothelium-dependent, NO-mediated vasorelaxation; mobilization of endothelial progenitor cells; and myocardial neovascularization of the infarct border in WT mice after MI while having no effect in eNOS−/− mice. LV dysfunction and interstitial fibrosis were markedly attenuated by Ator in WT mice, whereas no effect was observed in eNOS−/− mice after MI. Importantly, Ator significantly increased the survival rate during 4 weeks after MI in WT mice (Ator versus V, 80% versus 46%; P<0.01, n=75) but not in eNOS−/− mice (43% versus 48%; NS, n=42). Conclusions—These findings suggest that increased eNO availability is required for statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, LV dysfunction, interstitial fibrosis, and survival after MI. eNO bioavailability after MI likely represents an important therapeutic target in heart failure after MI and mediates beneficial effects of statin treatment after MI.


Circulation Research | 2004

Signal Transducer and Activator of Transcription 3 Is Required for Myocardial Capillary Growth, Control of Interstitial Matrix Deposition, and Heart Protection From Ischemic Injury

Denise Hilfiker-Kleiner; Andres Hilfiker; Martin Fuchs; Karol A. Kamiński; Arnd Schaefer; Bernhard Schieffer; Anja Hillmer; Andreas Schmiedl; Zhaoping Ding; Edith Podewski; Eva Podewski; Valeria Poli; Michael D. Schneider; Rainer Schulz; Joon-Keun Park; Kai C. Wollert; Helmut Drexler

The transcription factor signal transducer and activator of transcription 3 (STAT3) participates in a wide variety of physiological processes and directs seemingly contradictory responses such as proliferation and apoptosis. To elucidate its role in the heart, we generated mice harboring a cardiomyocyte-restricted knockout of STAT3 using Cre/loxP–mediated recombination. STAT3-deficient mice developed reduced myocardial capillary density and increased interstitial fibrosis within the first 4 postnatal months, followed by dilated cardiomyopathy with impaired cardiac function and premature death. Conditioned medium from STAT3-deficient cardiomyocytes inhibited endothelial cell proliferation and increased fibroblast proliferation, suggesting the presence of paracrine factors attenuating angiogenesis and promoting fibrosis in vitro. STAT3-deficient mice showed enhanced susceptibility to myocardial ischemia/reperfusion injury and infarction with increased cardiac apoptosis, increased infarct sizes, and reduced cardiac function and survival. Our study establishes a novel role for STAT3 in controlling paracrine circuits in the heart essential for postnatal capillary vasculature maintenance, interstitial matrix deposition balance, and protection from ischemic injury and heart failure.


European Heart Journal | 2009

Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial

Gerd Peter Meyer; Kai C. Wollert; Joachim Lotz; Jens Pirr; Ulrike Rager; Peter Lippolt; Andreas Hahn; Stephanie Fichtner; Arnd Schaefer; Lubomir Arseniev; Arnold Ganser; Helmut Drexler

AIMS We assessed whether a single intracoronary infusion of autologous bone marrow cells (BMCs) can have a sustained impact on left ventricular ejection fraction (LVEF) in patients after ST-elevation myocardial infarction (STEMI). In the BOne marrOw transfer to enhance ST-elevation infarct regeneration (BOOST) trial, 60 patients with STEMI and successful percutaneous coronary intervention were randomized to a control and a cell therapy group. As previously reported, BMC transfer led to an improvement of LVEF by 6.0% at 6 months (P = 0.003) and 2.8% at 18 months (P = 0.27). METHODS AND RESULTS Left ventricular ejection fraction and clinical status were re-assessed in all surviving patients after 61 +/- 11 months. Major adverse cardiac events occurred with similar frequency in both groups. When compared with baseline, LVEF assessed by magnetic resonance imaging at 61 months decreased by 3.3 +/- 9.5% in the control group and by 2.5 +/- 11.9% in the BMC group (P = 0.30). Patients with an infarct transmurality > median appeared to benefit from BMC transfer throughout the 61-month study period (P = 0.040). CONCLUSION A single intracoronary application of BMCs does not promote a sustained improvement of LVEF in STEMI patients with relatively preserved systolic function. It is conceivable that a subgroup of patients with more transmural infarcts may derive a sustained benefit from BMC therapy. However, this needs to be tested prospectively in a randomized trial.


Circulation Research | 2007

Critical Role of the NAD(P)H Oxidase Subunit p47phox for Left Ventricular Remodeling/Dysfunction and Survival After Myocardial Infarction

Carola Doerries; Karsten Grote; Denise Hilfiker-Kleiner; Maren Luchtefeld; Arnd Schaefer; Steven M. Holland; Sajoscha Sorrentino; Costantina Manes; Bernhard Schieffer; Helmut Drexler; Ulf Landmesser

Accumulating evidence suggests a critical role of increased reactive oxygen species production for left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). An increased myocardial activity of the NAD(P)H oxidase, a major oxidant enzyme system, has been observed in human heart failure; however, the role of the NAD(P)H oxidase for LV remodeling and dysfunction after MI remains to be determined. MI was induced in wild-type (WT) mice (n=46) and mice lacking the cytosolic NAD(P)H oxidase component p47phox (p47phox−/− mice) (n=32). Infarct size was similar among the groups. NAD(P)H oxidase activity was markedly increased in remote LV myocardium of WT mice after MI as compared with sham-operated mice (83±8 versus 16.7±3.5 nmol of O2− ·&mgr;g−1·min−1; P<0.01) but not in p47phox−/− mice after MI (13.5±3.6 versus 15.5±3.5 nmol of O2− ·&mgr;g−1·min−1), as assessed by electron-spin resonance spectroscopy using the spin probe CP-H. Furthermore, increased myocardial xanthine oxidase activity was observed in WT, but not in p47phox−/− mice after MI, suggesting NAD(P)H oxidase-dependent xanthine oxidase activation. Myocardial reactive oxygen species production was increased in WT mice, but not in p47phox−/− mice, after MI. LV cavity dilatation and dysfunction 4 weeks after MI were markedly attenuated in p47phox−/− mice as compared with WT mice, as assessed by echocardiography (LV end-diastolic diameter: 4.5±0.2 versus 6.3±0.3 mm, P<0.01; LV ejection fraction, 35.8±2.5 versus 22.6±4.4%, P<0.05). Furthermore, cardiomyocyte hypertrophy, apoptosis, and interstitial fibrosis were substantially reduced in p47phox−/− mice as compared with WT mice. Importantly, the survival rate was markedly higher in p47phox−/− mice as compared with WT mice after MI (72% versus 48%; P<0.05). These results suggest a pivotal role of NAD(P)H oxidase activation and its subunit p47phox for LV remodeling/dysfunction and survival after MI. The NAD(P)H oxidase system represents therefore a potential novel therapeutic target to prevent cardiac failure after MI.


Circulation | 2004

Allopurinol Attenuates Left Ventricular Remodeling and Dysfunction After Experimental Myocardial Infarction A New Action for an Old Drug

Niels Engberding; Stephan Spiekermann; Arnd Schaefer; André Heineke; Antje Wiencke; Maja Müller; Martin Fuchs; Denise Hilfiker-Kleiner; Burkhard Hornig; Helmut Drexler; Ulf Landmesser

Background—Accumulating evidence suggests a critical role for increased reactive oxygen species (ROS) production in left ventricular (LV) remodeling and dysfunction after myocardial infarction (MI). Increased expression of xanthine oxidase (XO), a major source of ROS, has recently been demonstrated in experimental and clinical heart failure; however, a potential role for LV remodeling processes remains unclear. We therefore studied the effect of long-term treatment with allopurinol, a potent XO inhibitor, on myocardial ROS production and LV remodeling and dysfunction after MI. Methods and Results—Mice with extensive anterior MI (n=105) were randomized to treatment with either vehicle or allopurinol (20 mg · kg−1 · d−1 by gavage) for 4 weeks starting on day 1 after surgery. Infarct size was similar among the groups. XO expression and activity were markedly increased in the remote myocardium of mice after MI, as determined by electron spin resonance spectroscopy. Myocardial ROS production was increased after MI but markedly reduced after allopurinol treatment. Importantly, allopurinol treatment substantially attenuated LV cavity dilatation and dysfunction after MI, as assessed by echocardiography, and markedly reduced myocardial hypertrophy and interstitial fibrosis. Conclusion—The present study reveals a novel beneficial effect of treatment with allopurinol, ie, a marked attenuation of LV remodeling processes and dysfunction after experimental MI. Allopurinol treatment therefore represents a potential novel strategy to prevent LV remodeling and dysfunction after MI.


Journal of the American College of Cardiology | 2011

Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional β1-blockade.

Sajoscha Sorrentino; Carola Doerries; Costantina Manes; Thimoteus Speer; Chantal Dessy; Irina Lobysheva; Wazma Mohmand; Razma Akbar; Ferdinand H. Bahlmann; Christian Besler; Arnd Schaefer; Denise Hilfiker-Kleiner; Thomas F. Lüscher; Jean-Luc Balligand; Helmut Drexler; Ulf Landmesser

OBJECTIVES The aim of this study was to investigate whether nebivolol has added effects on left ventricular (LV) dysfunction and remodeling early after myocardial infarction (MI) beyond its β₁-receptor-blocking properties. BACKGROUND Nebivolol is a third-generation selective β₁-adrenoreceptor antagonist that stimulates endothelial cell nitric oxide (NO) production and prevents vascular reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. Both endothelial NO synthase-derived NO production and NADPH oxidase activation are critical modulators of LV dysfunction early after MI. METHODS Mice with extensive anterior MI (n = 90) were randomized to treatment with nebivolol (10 mg/kg/day), metoprolol-succinate (20 mg/kg/day), or placebo for 30 days starting on day 1 after surgery. RESULTS Infarct size was similar among the groups. Both β₁-adrenergic receptor antagonists caused a similar decrease in heart rate. Nebivolol therapy improved endothelium-dependent vasorelaxation and increased early endothelial progenitor cells 4 weeks after MI compared with metoprolol and placebo. Nebivolol, but not metoprolol, inhibited cardiac NADPH oxidase activation after MI, as detected by electron spin resonance spectroscopy analysis. Importantly, nebivolol, but not metoprolol, improved LV dysfunction 4 weeks after MI (LV ejection fraction: nebivolol vs. metoprolol vs. placebo: 32 ± 4% vs. 17 ± 6% vs. 19 ± 4%; nebivolol vs. metoprolol: p < 0.05) and was associated with improved survival 4 weeks post-MI compared with placebo. Nebivolol had a significantly more pronounced inhibitory effect on cardiomyocyte hypertrophy after MI compared with metoprolol. CONCLUSIONS Nebivolol improves LV dysfunction and survival early after MI likely beyond the effects provided by conventional β₁-receptor blockade. Nebivolol induced effects on NO-mediated endothelial function, early endothelial progenitor cells and inhibition of myocardial NADPH oxidase likely contribute to these beneficial effects of nebivolol early after MI.


Circulation Research | 2005

Increased Collagen Deposition and Diastolic Dysfunction but Preserved Myocardial Hypertrophy After Pressure Overload in Mice Lacking PKCε

Gunnar Klein; Arnd Schaefer; Denise Hilfiker-Kleiner; Dagmar Oppermann; Praphulla C. Shukla; Anja Quint; Eva Podewski; Andres Hilfiker; Frank Schröder; Michael Leitges; Helmut Drexler

Overexpression and activation of protein kinase C-&egr; (PKC&egr;) results in myocardial hypertrophy. However, these observations do not establish that PKC&egr; is required for the development of myocardial hypertrophy. Thus, we subjected PKC&egr;-knockout (KO) mice to a hypertrophic stimulus by transverse aortic constriction (TAC). KO mice show normal cardiac morphology and function. TAC caused similar cardiac hypertrophy in KO and wild-type (WT) mice. However, KO mice developed more interstitial fibrosis and showed enhanced expression of collagen I&agr;1 and collagen III after TAC associated with diastolic dysfunction, as assessed by tissue Doppler echocardiography (Ea/Aa after TAC: WT 2.1±0.3 versus KO 1.0±0.2; P<0.05). To explore underlying mechanisms, we analyzed the left ventricular (LV) expression pattern of additional PKC isoforms (ie, PKC&agr;, PKC&bgr;, and PKC&dgr;). After TAC, expression and activation of PKC&dgr; protein was increased in KO LVs. Moreover, KO LVs displayed enhanced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), whereas p42/p44–MAPK activation was attenuated. Under stretch, cultured KO fibroblasts showed a 2-fold increased collagen I&agr;1 (col I&agr;1) expression, which was prevented by PKC&dgr; inhibitor rottlerin or by p38 MAPK inhibitor SB 203580. In conclusion, PKC&egr; is not required for the development of a pressure overload–induced myocardial hypertrophy. Lack of PKC&egr; results in upregulation of PKC&dgr; and promotes activation of p38 MAPK and JNK, which appears to compensate for cardiac hypertrophy, but in turn, is associated with increased collagen deposition and impaired diastolic function.


Circulation | 2010

Continuous Glycoprotein-130–Mediated Signal Transducer and Activator of Transcription-3 Activation Promotes Inflammation, Left Ventricular Rupture, and Adverse Outcome in Subacute Myocardial Infarction

Denise Hilfiker-Kleiner; Praphulla C. Shukla; Gunnar Klein; Arnd Schaefer; Britta Stapel; Melanie Hoch; Werner Müller; Michaela Scherr; Gregor Theilmeier; Matthias Ernst; Andres Hilfiker; Helmut Drexler

Background— In patients with myocardial infarction, high serum levels of interleukin-6 cytokines predict a poor outcome. The common receptor of interleukin-6 cytokines, glycoprotein-130 (gp130), signals via janus kinase/signal transducer and activator of transcription (STAT), cytoplasmic protein tyrosine phosphatase/extracellular signal-regulated kinase, and phosphoinositide-3-kinase/Akt pathways, and the regulation of these pathways depends at least in part on the gp130 tyrosine-757 residue. By analyzing cardiomyocyte-specific gp130Y757F mutant mice, we investigated the effect of disturbed gp130 signaling after myocardial infarction. Methods and Results— The cardiomyocyte-restricted &agr;-myosin heavy chain-Cre-recombinase-loxP system was used to generate mice with gp130Y757F mutant cardiomyocytes (&agr;MHC-Cretg/−;gp130fl/Y757F [Y757F]); all other cells carried at least 1 functional gp130 gene, ensuring normal gp130 signaling. Y757F mice displayed normal cardiac function and morphology at 3 months of age comparable to their nonmutant littermates. In response to myocardial infarction, Y757F mice displayed higher mortality associated with increased left ventricular rupture rate, sustained cardiac inflammation, and heart failure. These adverse effects were associated with prolonged and enhanced STAT3 activation and increased expression of interleukin-6 and of the complement-activating mannose-binding lectin C. Pharmacological inhibition of the complement system by cobra venom factor attenuated inflammation, prevented left ventricular rupture, and improved cardiac function in Y757F mice. Stronger effects were observed with a genetic reduction of STAT3 (STAT3flox/+) restricted to cardiomyocytes in Y757F mice, which prevented extensive upregulation of interleukin-6, complement activation, and sustained inflammation and lowered left ventricular rupture rate, heart failure, and mortality in subacute myocardial infarction. Conclusion— Impaired downregulation of gp130-mediated STAT3 activation in subacute infarction promotes cardiac inflammation, adverse remodeling, and heart failure, suggesting a potential causative role of high interleukin-6 serum levels after myocardial infarction.

Collaboration


Dive into the Arnd Schaefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar Klein

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge