Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arne D. Ekstrom is active.

Publication


Featured researches published by Arne D. Ekstrom.


The Journal of Neuroscience | 2007

Brain Oscillations Control Timing of Single-Neuron Activity in Humans

Joshua Jacobs; Michael J. Kahana; Arne D. Ekstrom; Itzhak Fried

A growing body of animal research suggests that neurons represent information not only in terms of their firing rates but also by varying the timing of spikes relative to neuronal oscillations. Although researchers have argued that this temporal coding is critical in human memory and perception, no supporting data from humans have been reported. This study provides the first analysis of the temporal relationship between brain oscillations and single-neuron activity in humans. Recording from 1924 neurons, we find that neuronal activity in various brain regions increases at specific phases of brain oscillations. Neurons in widespread brain regions were phase locked to oscillations in the theta- (4–8 Hz) and gamma- (30– 90 Hz) frequency bands. In hippocampus, phase locking was prevalent in the delta- (1–4 Hz) and gamma-frequency bands. Individual neurons were phase locked to various phases of theta and delta oscillations, but they only were active at the trough of gamma oscillations. These findings provide support for the temporal-coding hypothesis in humans. Specifically, they indicate that theta and delta oscillations facilitate phase coding and that gamma oscillations help to decode combinations of simultaneously active neurons.


Brain Research Reviews | 2010

How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation

Arne D. Ekstrom

Functional magnetic resonance imaging (fMRI) has become the dominant means of measuring behavior-related neural activity in the human brain. Yet the relation between the blood oxygen-level dependent (BOLD) signal and underlying neural activity remains an open and actively researched question. A widely accepted model, established for sensory neo-cortex, suggests that the BOLD signal reflects peri-synaptic activity in the form of the local field potential rather than the spiking rate of individual neurons. Several recent experimental results, however, suggest situations in which BOLD, spiking, and the local field potential dissociate. Two different models are discussed, based on the literature reviewed to account for this dissociation, a circuitry-based and vascular-based explanation. Both models are found to account for existing data under some testing situations and in certain brain regions. Because both the vascular and local circuitry-based explanations challenge the BOLD-LFP coupling model, these models provide guidance in predicting when BOLD can be expected to reflect neural processing and when the underlying relation with BOLD may be more complex than a direct correspondence.


The Journal of Neuroscience | 2012

Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging

Laura A. Libby; Arne D. Ekstrom; J. Daniel Ragland; Charan Ranganath

Numerous studies support the importance of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in episodic memory. Theories of PRC and PHC function in humans have been informed by neuroanatomical studies of these regions obtained in animal tract-tracing studies, but knowledge of the connectivity of PHC and PRC in humans is limited. To address this issue, we used resting-state functional magnetic resonance imaging to compare the intrinsic functional connectivity profiles associated with the PRC and PHC both across the neocortex and within the subfields of the hippocampus. In Experiment 1, we acquired standard-resolution whole-brain resting-state fMRI data in 15 participants, and in Experiment 2, we acquired high-resolution resting-state fMRI data targeting the hippocampus in an independent sample of 15 participants. Experiment 1 revealed that PRC showed preferential connectivity with the anterior hippocampus, whereas PHC showed preferential connectivity with posterior hippocampus. Experiment 2 indicated that this anterior–posterior functional connectivity dissociation was more evident for subfields CA1 and subiculum than for a combined CA2/CA3/dentate gyrus region. Finally, whole-brain analyses from Experiment 1 revealed preferential PRC connectivity with an anterior temporal and frontal cortical network, and preferential PHC connectivity with a posterior medial temporal, parietal, and occipital network. These results suggest a framework for refining models of the functional organization of the human medial temporal lobes in which the PRC and PHC are associated with distinct neocortical pathways that, in turn, may differentially interact with regions along the anterior–posterior axis of the hippocampus.


NeuroImage | 2008

Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers.

Alison C. Burggren; Michael Zeineh; Arne D. Ekstrom; Meredith N. Braskie; Paul M. Thompson; Gary W. Small; Susan Y. Bookheimer

Our objective was to investigate whether asymptomatic carriers of apolipoprotein E epsilon4 [APOE-4] demonstrate pathological differences and atrophy in medial temporal lobe (MTL) subregions. We measured cortical thickness and volume in MTL subregions (hippocampal CA fields 1, 2 and 3; dentate gyrus; entorhinal cortex; subiculum; perirhinal cortex; parahippocampal cortex; and fusiform gyrus) using a high-resolution in-plane (0.4x0.4 mm) MRI sequence in 30 cognitively normal volunteers (14 APOE-4 carriers, 16 non-carriers, mean age 57 years). A cortical unfolding procedure maximized the visibility of this convoluted cortex, providing cortical ribbon thickness measures throughout individual subregions of the hippocampus and surrounding cortex. APOE-4 carriers had reduced cortical thickness compared with non-carriers in entorhinal cortex (ERC) and the subiculum (Sub), but not in the main hippocampal body or perirhinal cortex. Average cortical thickness was 14.8% lower (p=1.0e(- 6)) for ERC and 12.6% lower (p=6.8e(- 5)) for Sub in APOE-4 carriers. Standard volumetric measures of the same regions showed similar, but non-significant trends. Cognitively intact carriers of APOE-4 show regionally specific thinning of the cortical ribbon compared to APOE-3 carriers; cortical thickness may be a more sensitive measure of pathological differences in genetic risk subjects than standard volumetry.


Nature Neuroscience | 2013

Frequency-specific network connectivity increases underlie accurate spatiotemporal memory retrieval

Andrew J. Watrous; Nitin Tandon; Chris R Conner; Thomas A. Pieters; Arne D. Ekstrom

The medial temporal lobes, prefrontal cortex and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. However, the manner in which these three regions interact during retrieval of spatial and temporal context remains untested. We employed simultaneous electrocorticographical recordings across multilobular regions in patients undergoing seizure monitoring while they retrieved spatial and temporal context associated with an episode, and we used phase synchronization as a measure of network connectivity. Successful memory retrieval was characterized by greater global connectivity compared with incorrect retrieval, with the medial temporal lobe acting as a hub for these interactions. Spatial versus temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as being central to episodic memory retrieval, providing insight into how multiple contexts underlying a single event can be recreated in the same network.


NeuroImage | 2015

Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol

Paul A. Yushkevich; Robert S.C. Amaral; Jean C. Augustinack; Andrew R. Bender; Jeffrey Bernstein; Marina Boccardi; Martina Bocchetta; Alison C. Burggren; Valerie A. Carr; M. Mallar Chakravarty; Gaël Chételat; Ana M. Daugherty; Lila Davachi; Song Lin Ding; Arne D. Ekstrom; Mirjam I. Geerlings; Abdul S. Hassan; Yushan Huang; J. Eugenio Iglesias; Renaud La Joie; Geoffrey A. Kerchner; Karen F. LaRocque; Laura A. Libby; Nikolai Malykhin; Susanne G. Mueller; Rosanna K. Olsen; Daniela J. Palombo; Mansi Bharat Parekh; John Pluta; Alison R. Preston

OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1-3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Prestimulus theta activity predicts correct source memory retrieval

Richard James Addante; Andrew J. Watrous; Andrew P. Yonelinas; Arne D. Ekstrom; Charan Ranganath

Recent evidence indicates that the processing of a stimulus can be influenced by preceding patterns of brain activity. Here we examine whether prestimulus oscillatory brain activity can influence the ability to retrieve episodic memories. Neural activity in the theta-frequency band (4–8 Hz) was enhanced before presentation of test items which elicited accurate recollection of contextual details of the prior study episode (“source retrieval”), relative to trials for which item recognition was successful but source retrieval failed. Poststimulus theta activity was also related to source retrieval, and the magnitude of poststimulus theta was predicted by the magnitude of the prestimulus theta effects. The results suggest that ongoing neural processes occurring before stimulus onset might play a critical role in readying the brain for successful memory retrieval.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A sense of direction in human entorhinal cortex

Joshua Jacobs; Michael J. Kahana; Arne D. Ekstrom; Matthew V. Mollison; Itzhak Fried

Finding our way in spatial environments is an essential part of daily life. How do we come to possess this sense of direction? Extensive research points to the hippocampus and entorhinal cortex (EC) as key neural structures underlying spatial navigation. To better understand this system, we examined recordings of single-neuron activity from neurosurgical patients playing a virtual-navigation video game. In addition to place cells, which encode the current virtual location, we describe a unique cell type, EC path cells, the activity of which indicates whether the patient is taking a clockwise or counterclockwise path around the virtual square road. We find that many EC path cells exhibit this directional activity throughout the environment, in contrast to hippocampal neurons, which primarily encode information about specific locations. More broadly, these findings support the hypothesis that EC encodes general properties of the current context (e.g., location or direction) that are used by hippocampus to build unique representations reflecting combinations of these properties.


The Journal of Neuroscience | 2011

Neural Oscillations Associated with Item and Temporal Order Maintenance in Working Memory

Liang Tien Hsieh; Arne D. Ekstrom; Charan Ranganath

The ability to retain information in working memory (WM) requires not only the active maintenance of information about specific items, but also the temporal order in which the items appeared. Although many studies have investigated the neural mechanisms of item maintenance, little is known about the neural mechanisms of temporal order maintenance in WM. Here, we used electroencephalography (EEG) to compare neural oscillations during WM tasks that required maintenance of item or temporal order information. Behavioral results revealed that accuracy and reaction times were comparable between the two conditions, suggesting that task difficulty was matched between the item and temporal order WM tasks. EEG analyses indicated that theta (5–7 Hz) oscillations over prefrontal sites were increased during temporal order maintenance, whereas alpha oscillations (9–12 Hz) over posterior parietal and lateral occipital sites were increased during item maintenance. The frontal theta enhancement was primarily evident in high performers on the order WM task, whereas the posterior alpha enhancement was primarily evident in high performers on the item WM task. These results support the idea that frontal theta and posterior alpha oscillations are differentially related to maintenance of item and temporal order information.


The Journal of Neuroscience | 2009

Human hippocampal CA1 involvement during allocentric encoding of spatial information.

Nanthia Suthana; Arne D. Ekstrom; Saba Moshirvaziri; Barbara J. Knowlton; Susan Y. Bookheimer

A central component of our ability to navigate an environment is the formation of a memory representation that is allocentric and thus independent of our starting point within that environment. Computational models and rodent electrophysiological recordings suggest a critical role for the CA1 subregion of the hippocampus in this type of coding; however, the hippocampal neural basis of spatial learning in humans remains unclear. We studied subjects learning virtual environments using high-resolution functional magnetic resonance imaging (1.6 mm × 1.6 mm in-plane) and computational unfolding to better visualize substructural changes in neural activity in the hippocampus. We show that the right posterior CA1 subregion is active and positively correlated with performance when subjects learn a spatial environment independent of starting point and direction. Altogether, our results demonstrate that the CA1 subregion is involved in our ability to learn a map-like representation of an environment.

Collaboration


Dive into the Arne D. Ekstrom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Itzhak Fried

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin T. Kyle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Jones

University of California

View shared research outputs
Top Co-Authors

Avatar

Markus Donix

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge