Arne Raasakka
University of Bergen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arne Raasakka.
Cell Reports | 2017
Nicolas Snaidero; Caroline Velte; Matti Myllykoski; Arne Raasakka; Alexander Ignatev; Hauke B. Werner; Michelle S. Erwig; Wiebke Möbius; Petri Kursula; Klaus-Armin Nave; Mikael Simons
Summary The myelin sheath is a multilamellar plasma membrane extension of highly specialized glial cells laid down in regularly spaced segments along axons. Recent studies indicate that myelin is metabolically active and capable of communicating with the underlying axon. To be functionally connected to the neuron, oligodendrocytes maintain non-compacted myelin as cytoplasmic nanochannels. Here, we used high-pressure freezing for electron microscopy to study these cytoplasmic regions within myelin close to their native state. We identified 2,′3′-cyclic nucleotide 3′-phosphodiesterase (CNP), an oligodendrocyte-specific protein previously implicated in the maintenance of axonal integrity, as an essential factor in generating and maintaining cytoplasm within the myelin compartment. We provide evidence that CNP directly associates with and organizes the actin cytoskeleton, thereby providing an intracellular strut that counteracts membrane compaction by myelin basic protein (MBP). Our study provides a molecular and structural framework for understanding how myelin maintains its cytoplasm to function as an active axon-glial unit.
PLOS ONE | 2012
Matti Myllykoski; Arne Raasakka; Petri Kursula
The 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is a highly abundant membrane-associated enzyme in the myelin sheath of the vertebrate nervous system. CNPase is a member of the 2H phosphoesterase family and catalyzes the formation of 2′-nucleotide products from 2′,3′-cyclic substrates; however, its physiological substrate and function remain unknown. It is likely that CNPase participates in RNA metabolism in the myelinating cell. We solved crystal structures of the phosphodiesterase domain of mouse CNPase, showing the binding mode of nucleotide ligands in the active site. The binding mode of the product 2′-AMP provides a detailed view of the reaction mechanism. Comparisons of CNPase crystal structures highlight flexible loops, which could play roles in substrate recognition; large differences in the active-site vicinity are observed when comparing more distant members of the 2H family. We also studied the full-length CNPase, showing its N-terminal domain is involved in RNA binding and dimerization. Our results provide a detailed picture of the CNPase active site during its catalytic cycle, and suggest a specific function for the previously uncharacterized N-terminal domain.
Neuroscience Bulletin | 2014
Arne Raasakka; Petri Kursula
The membrane-anchored myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) was discovered in the early 1960s and has since then troubled scientists with its peculiar catalytic activity and high expression levels in the central nervous system. Despite decades of research, the actual physiological relevance of CNPase has only recently begun to unravel. In addition to a role in myelination, CNPase is also involved in local adenosine production in traumatic brain injury and possibly has a regulatory function in mitochondrial membrane permeabilization. Although research focusing on the CNPase phosphodiesterase activity has been helpful, several open questions concerning the protein function in vivo remain unanswered. This review is focused on past research on CNPase, especially in the fields of structural biology and enzymology, and outlines the current understanding regarding the biochemical and physiological significance of CNPase, providing ideas and directions for future research.
Journal of Molecular Biology | 2013
Matti Myllykoski; Arne Raasakka; Mari Lehtimäki; Inari Kursula; Petri Kursula
Abstract 2H phosphoesterases catalyze reactions on nucleotide substrates and contain two conserved histidine residues in the active site. Very limited information is currently available on the details of the active site and substrate/product binding during the catalytic cycle of these enzymes. We performed a comprehensive X-ray crystallographic study of mouse 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), a membrane-associated enzyme present at high levels in the tetrapod myelin sheath. We determined crystal structures of the CNPase phosphodiesterase domain complexed with substrate, product, and phosphorothioate analogues. The data provide detailed information on the CNPase reaction mechanism, including substrate binding mode and coordination of the nucleophilic water molecule. Linked to the reaction, an open/close motion of the β5–α7 loop is observed. The role of the N terminus of helix α7—unique for CNPase in the 2H family—during the reaction indicates that 2H phosphoesterases differ in their respective reaction mechanisms despite the conserved catalytic residues. Furthermore, based on small-angle X-ray scattering, we present a model for the full-length enzyme, indicating that the two domains of CNPase form an elongated molecule. Finally, based on our structural data and a comprehensive bioinformatics study, we discuss the conservation of CNPase in various organisms.
Scientific Reports | 2015
Arne Raasakka; Matti Myllykoski; Saara Laulumaa; Mari Lehtimäki; Michael Härtlein; Martine Moulin; Inari Kursula; Petri Kursula
2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2′,3′-cyclic monophosphates to nucleoside 2′-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release.
Scientific Reports | 2017
Arne Raasakka; Julia Kowal; Robert Barker; Anne Baumann; Anne L. Martel; Jussi T. Tuusa; Matti Myllykoski; Jochen Bürck; Anne S. Ulrich; Henning Stahlberg; Petri Kursula
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015
Saara Laulumaa; Matthew P. Blakeley; Arne Raasakka; Martine Moulin; Michael Härtlein; Petri Kursula
The molecular details of the formation of the myelin sheath, a multilayered membrane in the nervous system, are to a large extent unknown. P2 is a peripheral membrane protein from peripheral nervous system myelin, which is believed to play a role in this process. X-ray crystallographic studies and complementary experiments have provided information on the structure-function relationships in P2. In this study, a fully deuterated sample of human P2 was produced. Crystals that were large enough for neutron diffraction were grown by a ten-month procedure of feeding, and neutron diffraction data were collected to a resolution of 2.4 Å from a crystal of 0.09 mm(3) in volume. The neutron crystal structure will allow the positions of H atoms in P2 and its fatty-acid ligand to be visualized, as well as shedding light on the fine details of the hydrogen-bonding networks within the P2 ligand-binding cavity.
Scientific Reports | 2017
Tuomo Nieminen; Cecilie K. Kristiansen; Guro H. Vatne; Anne Baumann; Erik I. Hallin; Arne Raasakka; Päivi Joensuu; Ulrich Bergmann; Ilpo Vattulainen; Petri Kursula
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the β barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.
Multiple Sclerosis and Demyelinating Disorders | 2017
Jussi T. Tuusa; Arne Raasakka; Petri Kursula
BackgroundDespite intense research, the causes of various neurological diseases remain enigmatic to date. A role for viral or bacterial infection and associated molecular mimicry has frequently been suggested in the etiology of neurological diseases, including demyelinating autoimmune disorders, such as multiple sclerosis. Pathogen mimics of myelin-derived autoimmune peptides have been described in the literature and shown to induce myelin autoimmune responses in animal models.MethodsWe carried out a structural study on myelin-derived peptides, and mimics thereof from various pathogens, in aqueous and membrane-like environments, using conventional and synchrotron radiation circular dichroism spectroscopy. A total of 13 peptides from the literature were studied, and 290 circular dichroism spectra were analysed. In addition, peptide structure predictions and vesicle aggregation assays were performed.ResultsThe results indicate a high level of similarity in the biophysical and folding properties of the peptides from either myelin proteins or proteins from pathogenic viruses or bacteria; essentially all of the studied peptides folded in the presence of lipid vesicles or under other membrane-mimicking conditions, which is a sign of membrane interaction. Many of the peptides presented remarkable similarities in their conformation in different environments.ConclusionsAs most of the studied epitope segments in myelin proteins are associated with membrane-binding sites, our results support a view of molecular mimicry, involving lipid membrane interaction propensity and similar conformational properties, possibly playing a role in demyelinating disease. The results suggest mechanisms related to protein amphiphilicity and order-disorder transitions in the recognition of peptide epitopes in autoimmune demyelination.
BMC Biochemistry | 2017
Gopinath Muruganandam; Arne Raasakka; Matti Myllykoski; Inari Kursula; Petri Kursula
BackgroundEukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5′-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase).ResultsWe employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering.ConclusionsWe provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.