Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arne W. Nolte is active.

Publication


Featured researches published by Arne W. Nolte.


Journal of Evolutionary Biology | 2013

Hybridization and speciation

Richard J. Abbott; Dirk C. Albach; Stephen W. Ansell; Jan W. Arntzen; S. J. E. Baird; N. Bierne; Janette W. Boughman; Alan Brelsford; C. A. Buerkle; Richard J. A. Buggs; Roger K. Butlin; Ulf Dieckmann; Fabrice Eroukhmanoff; Andrea Grill; Sara Helms Cahan; Jo S. Hermansen; Godfrey M. Hewitt; A. G. Hudson; Chris D. Jiggins; J. Jones; Barbara Keller; T. Marczewski; James Mallet; P. Martinez-Rodriguez; Markus Möst; Sean P. Mullen; Richard A. Nichols; Arne W. Nolte; Christian Parisod; Karin S. Pfennig

Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near‐instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock‐on effects on speciation both within and outside regions of hybridization.


Frontiers in Zoology | 2007

An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

Rainer Sonnenberg; Arne W. Nolte; Diethard Tautz

BackgroundIdentification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI). While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region.ResultsUniversal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (<< 0.1% on average) indicating that concerted evolution is very effective in most cases. Studies in two fish taxa (genus Cottus and genus Aphyosemion) show that the D1-D2 LSU sequence can resolve even very closely related species with the same fidelity as COI sequences. In one case we can even show that a mitochondrial transfer must have occurred, since the nuclear sequence confirms the taxonomic assignment, while the mitochondrial sequence would have led to the wrong classification. We have further explored whether hybrids between species can be detected with the nuclear sequence and we show for a test case of natural hybrids among cyprinid fish species (Alburnus alburnus and Rutilus rutilus) that this is indeed possible.ConclusionThe D1-D2 LSU region is a suitable marker region for applications in DNA based species identification and should be considered to be routinely used as a marker complementing broad scale studies based on mitochondrial markers.


Philosophical Transactions of the Royal Society B | 2010

On the origin of species: insights from the ecological genomics of lake whitefish

Louis Bernatchez; Sébastien Renaut; Andrew R. Whiteley; Nicolas Derome; Julie Jeukens; Lysandre Landry; Guoqing Lu; Arne W. Nolte; Kjartan Østbye; Sean M. Rogers; Jérôme St-Cyr

In contrast to the large amount of ecological information supporting the role of natural selection as a main cause of population divergence and speciation, an understanding of the genomic basis underlying those processes is in its infancy. In this paper, we review the main findings of a long-term research programme that we have been conducting on the ecological genomics of sympatric forms of whitefish (Coregonus spp.) engaged in the process of speciation. We present this system as an example of how applying a combination of approaches under the conceptual framework of the theory of adaptive radiation has yielded substantial insight into evolutionary processes in a non-model species. We also discuss how the joint use of recent biotechnological developments will provide a powerful means to address issues raised by observations made to date. Namely, we present data illustrating the potential offered by combining next generation sequencing technologies with other genomic approaches to reveal the genomic bases of adaptive divergence and reproductive isolation. Given increasing access to these new genomic tools, we argue that non-model species studied in their ecological context such as whitefish will play an increasingly important role in generalizing knowledge of speciation.


Molecular Ecology | 2010

Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (Coregonus spp. Salmonidae)

Sébastien Renaut; Arne W. Nolte; Louis Bernatchez

Next‐generation sequencing allows the discovery of large numbers of single nucleotide polymorphisms (SNPs) in species where little genomic information was previously available. Here, we assembled, de novo, over 130 mb of non‐normalized cDNA using 454 pyrosequencing data from dwarf and normal lake whitefish and backcross hybrids. Our main goals were to gather a large data set of SNP markers, document their distribution within coding regions, evaluate the effect of species divergence on allele frequencies and combine results with previous genomic studies to identify candidate genes underlying the adaptive divergence of lake whitefish. We identified 6094 putative SNPs in 2674 contigs (mean size: 576 bp, range: 101–6116) and 1540 synonymous and 1734 non‐synonymous mutations for a genome‐wide non‐synonymous to synonymous substitution rate ratio (pN/pS) of 0.37. As expected based on the young age (<15 000 years) of whitefish species pair, the overall level of divergence between them was relatively weak. Yet, 89 SNPs showed pronounced allele frequency differences between sympatric normal and dwarf whitefish. Among these, SNPs in genes annotated to energy metabolic functions were the most abundant and this, in addition to previous experimental data at the gene expression and phenotypic level, brings compelling evidence that genes involved in energy metabolism are prime candidates explaining the adaptive divergence of lake whitefish species pairs. Finally, we unexpectedly identified 44 contigs annotated to transposable elements and these were predominantly composed of backcross hybrids sequences. This indicates an elevated activity of transposable elements, which could potentially contribute to the reduced fitness of hybrids previously documented.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

An invasive lineage of sculpins, Cottus sp (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups

Arne W. Nolte; Jörg Freyhof; Kathryn Stemshorn; Diethard Tautz

Fish abundance surveys in the Rhine system have shown in the past two decades that there is a rapid upriver invasion of a freshwater sculpin of the genus Cottus. These fish are found in habitats that are atypical for the known species Cottus gobio, which is confined to small cold streams within the Rhine drainage. Phylogeographic analysis based on mitochondrial haplotypes and diagnostic single nucleotide polymorphisms indicates that the invasive sculpins are hybrids between two old lineages from the River Scheldt drainage and the River Rhine drainage, although it is morphologically more similar to the Scheldt sculpins. Most importantly, however, the invasive population possesses a unique ecological potential that does not occur in either of the source populations from the Rhine or the Scheldt, which allows the colonization of new habitats that have previously been free of sculpins. Microsatellite analysis shows that the new lineage is genetically intermediate between the old lineages and that it forms a distinct genetic group across its whole expansion range. We conclude that hybridization between long separated groups has lead to the fast emergence of a new, adaptationally distinct sculpin lineage.


Molecular Ecology | 2000

Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre‐Pleistocene origin of the major central European populations

Claudia Englbrecht; Jörg Freyhof; Arne W. Nolte; Kornelia Rassmann; Ulrich K. Schliewen; Diethard Tautz

The bullhead Cottus gobio is a small, bottom‐dwelling fish consisting of populations that have not been subject to transplantations or artificial stocking. It is therefore an ideal model species for studying the colonization history of central European freshwater systems, in particular with respect to the possible influences of the Pleistocene glaciation cycles. We sampled Cottus populations across most of its distribution range, with a special emphasis on southern Germany where the major European drainage systems are in closest contact. Mitochondrial d‐loop sequencing of more than 400 specimens and phylogenetic network analysis allowed us to draw a detailed picture of the colonization of Europe by C. gobio. Moreover, the molecular distances between the haplotypes enabled us to infer an approximate time frame for the origin of the various populations. The founder population of C. gobio stems apparently from the Paratethys and invaded Europe in the Pliocene. From there, the first colonization into central Europe occurred via the ancient lower Danube, with a separate colonization of the eastern European territories. During the late Pliocene, one of the central European populations must have reached the North Sea in a second step after which it then started to colonize the Atlantic drainages via coastal lines. Accordingly, we found very distinct populations in the upper and lower Rhine, which can be explained by the fact that the lower Rhine was disconnected from the upper Rhine until ≈ 1 million years ago (Ma). More closely related, but still distinct, populations were found in the Elbe, the Main and the upper Danube, all presumably of Pleistocene origin. Intriguingly, they have largely maintained their population identity, despite the strong disturbance caused by the glaciation cycles in these areas. On the other hand, a mixing of populations during postglacial recolonization could be detected in the lower Rhine and its tributaries. However, the general pattern that emerges from our analysis suggests that the glaciation cycles did not have a major impact on the general population structure of C. gobio in central Europe.


Trends in Genetics | 2010

Understanding the onset of hybrid speciation

Arne W. Nolte; Diethard Tautz

Natural hybridization between closely related taxa is a common phenomenon in both plants and animals. Hybridization has often been viewed as a destructive force that could erode established gene pools, but it is increasingly being recognized as a potentially creative force in evolution because it can lead to a mixture of novel genotypes, some of which have the potential for rapid adaptation to new environmental conditions. However, the evolutionary dynamics leading to the emergence of newly adapted gene pools after hybridization are largely unexplored. Here, we argue that the identification and analysis of the dynamic processes that occur after the first contact deserve specific attention, because this is the phase where hybrid speciation is most different from other forms of speciation.


Nucleic Acids Research | 2006

Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted

Alex Pozhitkov; Peter A. Noble; Tomislav Domazet-Lošo; Arne W. Nolte; Rainer Sonnenberg; Peer F Staehler; Markus Beier; Diethard Tautz

Hybridization of rRNAs to microarrays is a promising approach for prokaryotic and eukaryotic species identification. Typically, the amount of bound target is measured by fluorescent intensity and it is assumed that the signal intensity is directly related to the target concentration. Using thirteen different eukaryotic LSU rRNA target sequences and 7693 short perfect match oligonucleotide probes, we have assessed current approaches for predicting signal intensities by comparing Gibbs free energy (ΔG°) calculations to experimental results. Our evaluation revealed a poor statistical relationship between predicted and actual intensities. Although signal intensities for a given target varied up to 70-fold, none of the predictors were able to fully explain this variation. Also, no combination of different free energy terms, as assessed by principal component and neural network analyses, provided a reliable predictor of hybridization efficiency. We also examined the effects of single-base pair mismatch (MM) (all possible types and positions) on signal intensities of duplexes. We found that the MM effects differ from those that were predicted from solution-based hybridizations. These results recommend against the application of probe design software tools that use thermodynamic parameters to assess probe quality for species identification. Our results imply that the thermodynamic properties of oligonucleotide hybridization are by far not yet understood.


Molecular Ecology | 2009

Variable patterns of introgression in two sculpin hybrid zones suggest that genomic isolation differs among populations

Arne W. Nolte; Zachariah Gompert; C. A. Buerkle

Theory predicts that reproductive isolation may be due to intrinsic genetic incompatibilities or extrinsic ecological factors. Therefore, an understanding of the genetic basis of isolation may require analyses of evolutionary processes in situ to include environmental factors. Here we study genetic isolation between populations of sculpins (Cottus) at 168 microsatellites. Genomic clines were fit using 480 individuals sampled across independent natural hybrid zones that have formed between one invading species and two separate populations of a resident species. Our analysis tests for deviations from neutral patterns of introgression at individual loci based on expectations given genome‐wide admixture. Roughly 51% of the loci analysed displayed significant deviations. An overall deficit of interspecific heterozygotes in 26% and 21% of the loci suggests that widespread underdominance drives genomic isolation. At the same time, selection promotes introgression of almost 30% of the markers, which implies that hybridization may increase the fitness of admixed individuals. Cases of overdominance or epistatic interactions were relatively rare. Despite the similarity of the two hybrid zones in their overall genomic composition, patterns observed at individual loci show little correlation between zones and many fit different genotypic models of fitness. At this point, it remains difficult to determine whether these results are due to differences in external selection pressures or cryptic genetic differentiation of distinct parental populations. In the future, data from mapped genetic markers and on variation of ecological factors will provide additional insights into the contribution of these factors to variation in the evolutionary consequences of hybridization.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Adaptive radiation and hybridization in Wallace's Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi

Fabian Herder; Arne W. Nolte; Jobst Pfaender; Julia Schwarzer; Renny K. Hadiaty; Ulrich K. Schliewen

Adaptive radiations are extremely useful to understand factors driving speciation. A challenge in speciation research is to distinguish forces creating novelties and those relevant to divergence and adaptation. Recently, hybridization has regained major interest as a potential force leading to functional novelty and to the genesis of new species. Here, we show that introgressive hybridization is a prominent phenomenon in the radiation of sailfin silversides (Teleostei: Atheriniformes: Telmatherinidae) inhabiting the ancient Malili Lakes of Sulawesi, correlating conspicuously with patterns of increased diversity. We found the most diverse lacustrine species-group of the radiation to be heavily introgressed by genotypes originating from streams of the lake system, an effect that has masked the primary phylogenetic pattern of the flock. We conclude that hybridization could have acted as a key factor in the generation of the flocks spectacular diversity. To our knowledge, this is the first empirical evidence for massive reticulate evolution within a complex animal radiation.

Collaboration


Dive into the Arne W. Nolte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Renaut

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastian Steinfartz

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge