Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arno Zaritsky is active.

Publication


Featured researches published by Arno Zaritsky.


Circulation | 2010

Part 9: Post–Cardiac Arrest Care 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Mary Ann Peberdy; Clifton W. Callaway; Robert W. Neumar; Romergryko G. Geocadin; Janice L. Zimmerman; Michael W. Donnino; Andrea Gabrielli; Scott M. Silvers; Arno Zaritsky; Raina M. Merchant; Terry L. Vanden Hoek; Steven L. Kronick

The goal of immediate post-cardiac arrest care is to optimize systemic perfusion, restore metabolic homeostasis, and support organ system function to increase the likelihood of intact neurological survival. The post-cardiac arrest period is often marked by hemodynamic instability as well as metabolic abnormalities. Support and treatment of acute myocardial dysfunction and acute myocardial ischemia can increase the probability of survival. Interventions to reduce secondary brain injury, such as therapeutic hypothermia, can improve survival and neurological recovery. Every organ system is at risk during this period, and patients are at risk of developing multiorgan dysfunction. The comprehensive treatment of diverse problems after cardiac arrest involves multidisciplinary aspects of critical care, cardiology, and neurology. For this reason, it is important to admit patients to appropriate critical-care units with a prospective plan of care to anticipate, monitor, and treat each of these diverse problems. It is also important to appreciate the relative strengths and weaknesses of different tools for estimating the prognosis of patients after cardiac arrest.


Circulation | 2010

Part 13: Pediatric Basic Life Support 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Monica E. Kleinman; Leon Chameides; Stephen M. Schexnayder; Ricardo A. Samson; Mary Fran Hazinski; Dianne L. Atkins; Marc D. Berg; Allan R. de Caen; Ericka L. Fink; Eugene B. Freid; Robert W. Hickey; Bradley S. Marino; Vinay Nadkarni; Lester T. Proctor; Faiqa Qureshi; Kennith Sartorelli; Alexis A. Topjian; Elise W. van der Jagt; Arno Zaritsky

In contrast to adults, cardiac arrest in infants and children does not usually result from a primary cardiac cause. More often it is the terminal result of progressive respiratory failure or shock, also called an asphyxial arrest. Asphyxia begins with a variable period of systemic hypoxemia, hypercapnea, and acidosis, progresses to bradycardia and hypotension, and culminates with cardiac arrest.1 Another mechanism of cardiac arrest, ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT), is the initial cardiac rhythm in approximately 5% to 15% of pediatric in-hospital and out-of-hospital cardiac arrests;2,–,9 it is reported in up to 27% of pediatric in-hospital arrests at some point during the resuscitation.6 The incidence of VF/pulseless VT cardiac arrest rises with age.2,4 Increasing evidence suggests that sudden unexpected death in young people can be associated with genetic abnormalities in myocyte ion channels resulting in abnormalities in ion flow (see “Sudden Unexplained Deaths,” below). Since 2010 marks the 50th anniversary of the introduction of cardiopulmonary resuscitation (CPR),10 it seems appropriate to review the progressive improvement in outcome of pediatric resuscitation from cardiac arrest. Survival from in-hospital cardiac arrest in infants and children in the 1980s was around 9%.11,12 Approximately 20 years later, that figure had increased to 17%,13,14 and by 2006, to 27%.15,–,17 In contrast to those favorable results from in-hospital cardiac arrest, overall survival to discharge from out-of-hospital cardiac arrest in infants and children has not changed substantially in 20 years and remains at about 6% (3% for infants and 9% for children and adolescents).7,9 It is unclear why the improvement in outcome from in-hospital cardiac arrest has occurred, although earlier recognition and management of at-risk patients on general inpatient units …


Circulation | 1997

Recommended Guidelines for Reviewing, Reporting, and Conducting Research on In-Hospital Resuscitation: The In-Hospital ‘Utstein Style’ A Statement for Healthcare Professionals From the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Australian Resuscitation Council, and the Resuscitation Councils of Southern Africa

Richard O. Cummins; Douglas Chamberlain; Mary Fran Hazinski; Vinay Nadkarni; Walter Kloeck; Efraim Kramer; Lance B. Becker; Colin Robertson; Rudi Koster; Arno Zaritsky; Leo Bossaert; Joseph P. Ornato; Victor Callanan; Mervyn Allen; Petter Andreas Steen; Brian Connolly; Arthur B. Sanders; Ahamed Idris; Stuart M. Cobbe

This scientific statement is the product of the Utstein ’95 Symposium held June 23-24, 1995, at Utstein Abbey, Island of Mosteroy, Rogaland County, Norway. Draft versions were circulated for comment to participants of the Utstein ’95 Symposium; the European Resuscitation Council Executive Committee; the Emergency Cardiac Care Committee of the American Heart Association; the Executive Committees of the Heart and Stroke Foundation of Canada, the Australian Resuscitation Council, and the Resuscitation Councils of Southern Africa; and several outside reviewers. The development of this statement was authorized by the Science Advisory and Coordinating Committee of the AHA and the Executive Committee of the European Resuscitation Council. We do not know the true effectiveness of in-hospital resuscitation. Observed results of the many published studies vary greatly. Studies originate from different settings and have different patient populations. Reports suffer from nonuniform nomenclature and variable inclusion definitions. Patients differ in the extent of comorbid conditions and interventions in place at the time of cardiac arrest. These differences prevent valid interhospital and intrahospital comparisons and make determining the effectiveness of current resuscitation techniques impossible. To develop these guidelines the task force used a consensus development process that originated with the “Utstein style” for reporting outcome data from out-of-hospital resuscitation events. Task force members performed an integrated review of published studies. An initial draft was prepared, discussed, and revised at a 2-day conference. Further drafts were revised and circulated among task force members and discussed face-to-face at three subsequent meetings. The task force defined a set of data elements that are essential or desirable for documenting in-hospital cardiac arrest. Data categories are hospital variables, patient variables, arrest variables, and outcome variables. The “In-Hospital Utstein-Style Template” was developed to summarize these data and recommendations for reporting a specific set of survival rates and outcomes. The task force …


Pediatrics | 2006

2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: Pediatric advanced life support

Dianne L. Atkins; Marc D. Berg; Robert A. Berg; Adnan T. Bhutta; Dominique Biarent; Robert Bingham; Dana Braner; Renato Carrera; Leon Chameides; Ashraf Coovadia; Allan R. de Caen; Douglas S. Diekema; Diana G. Fendya; Melinda L. Fiedor; Richard T. Fiser; Susan Fuchs; Mike Gerardi; Wiliam Hammill; George W. Hatch; Mary Fran Hazinski; Robert W. Hickey; John Kattwinkel; Monica E. Kleinman; Jesús López-Herce; Peter Morley; Marilyn C. Morris; Vinay Nadkarni; Jerry P. Nolan; Jeffrey Perlman; Lester T. Proctor

This publication presents the 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of the pediatric patient and the 2005 American Academy of Pediatrics/AHA guidelines for CPR and ECC of the neonate. The guidelines are based on the evidence evaluation from the 2005 International Consensus Conference on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations, hosted by the American Heart Association in Dallas, Texas, January 23–30, 2005. The “2005 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care” contain recommendations designed to improve survival from sudden cardiac arrest and acute life-threatening cardiopulmonary problems. The evidence evaluation process that was the basis for these guidelines was accomplished in collaboration with the International Liaison Committee on Resuscitation (ILCOR). The ILCOR process is described in more detail in the “International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations.” The recommendations in the “2005 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care” confirm the safety and effectiveness of many approaches, acknowledge that other approaches may not be optimal, and recommend new treatments that have undergone evidence evaluation. These new recommendations do not imply that care involving the use of earlier guidelines is unsafe. In addition, it is important to note that these guidelines will not apply to all rescuers and all victims in all situations. The leader of a resuscitation attempt may need to adapt application of the guidelines to unique circumstances. The following are the major pediatric advanced life support changes in the 2005 guidelines: There is further caution about the use of endotracheal tubes. Laryngeal mask airways are acceptable when used by experienced providers. Cuffed endotracheal tubes may be used in infants (except newborns) and children in in-hospital settings provided that cuff inflation pressure is kept <20 cm H2O. Confirmation of tube placement requires clinical assessment and assessment of exhaled carbon dioxide (CO2); esophageal detector devices may be considered for use in children weighing >20 kg who have a perfusing rhythm. Correct placement must be verified when the tube is inserted, during transport, and whenever the patient is moved. During CPR with an advanced airway in place, rescuers will no longer perform “cycles” of CPR. Instead, the rescuer performing chest compressions will perform them continuously at a rate of 100/minute without pauses for ventilation. The rescuer providing ventilation will deliver 8 to 10 breaths per minute (1 breath approximately every 6–8 seconds). Timing of 1 shock, CPR, and drug administration during pulseless arrest has changed and now is identical to that for advanced cardiac life support. Routine use of high-dose epinephrine is not recommended. Lidocaine is de-emphasized, but it can be used for treatment of ventricular fibrillation/pulseless ventricular tachycardia if amiodarone is not available. Induced hypothermia (32–34°C for 12–24 hours) may be considered if the child remains comatose after resuscitation. Indications for the use of inodilators are mentioned in the postresuscitation section. Termination of resuscitative efforts is discussed. It is noted that intact survival has been reported following prolonged resuscitation and absence of spontaneous circulation despite 2 doses of epinephrine. The following are the major neonatal resuscitation changes in the 2005 guidelines: Supplementary oxygen is recommended whenever positive-pressure ventilation is indicated for resuscitation; free-flow oxygen should be administered to infants who are breathing but have central cyanosis. Although the standard approach to resuscitation is to use 100% oxygen, it is reasonable to begin resuscitation with an oxygen concentration of less than 100% or to start with no supplementary oxygen (ie, start with room air). If the clinician begins resuscitation with room air, it is recommended that supplementary oxygen be available to use if there is no appreciable improvement within 90 seconds after birth. In situations where supplementary oxygen is not readily available, positive-pressure ventilation should be administered with room air. Current recommendations no longer advise routine intrapartum oropharyngeal and nasopharyngeal suctioning for infants born to mothers with meconium staining of amniotic fluid. Endotracheal suctioning for infants who are not vigorous should be performed immediately after birth. A self-inflating bag, a flow-inflating bag, or a T-piece (a valved mechanical device designed to regulate pressure and limit flow) can be used to ventilate a newborn. An increase in heart rate is the primary sign of improved ventilation during resuscitation. Exhaled CO2 detection is the recommended primary technique to confirm correct endotracheal tube placement when a prompt increase in heart rate does not occur after intubation. The recommended intravenous (IV) epinephrine dose is 0.01 to 0.03 mg/kg per dose. Higher IV doses are not recommended, and IV administration is the preferred route. Although access is being obtained, administration of a higher dose (up to 0.1 mg/kg) through the endotracheal tube may be considered. It is possible to identify conditions associated with high mortality and poor outcome in which withholding resuscitative efforts may be considered reasonable, particularly when there has been the opportunity for parental agreement. The following guidelines must be interpreted according to current regional outcomes: When gestation, birth weight, or congenital anomalies are associated with almost certain early death and when unacceptably high morbidity is likely among the rare survivors, resuscitation is not indicated. Examples are provided in the guidelines. In conditions associated with a high rate of survival and acceptable morbidity, resuscitation is nearly always indicated. In conditions associated with uncertain prognosis in which survival is borderline, the morbidity rate is relatively high, and the anticipated burden to the child is high, parental desires concerning initiation of resuscitation should be supported. Infants without signs of life (no heartbeat and no respiratory effort) after 10 minutes of resuscitation show either a high mortality rate or severe neurodevelopmental disability. After 10 minutes of continuous and adequate resuscitative efforts, discontinuation of resuscitation may be justified if there are no signs of life.


Circulation | 1997

Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: The in-hospital 'Utstein style'

Richard O. Cummins; Douglas Chamberlain; Mary Fran Hazinski; Vinay Nadkarni; Walter Kloeck; Efraim Kramer; Lance B. Becker; Colin Robertson; Rudi Koster; Arno Zaritsky; Leo Bossaert; Joseph P. Ornato; Victor Callanan; Mervyn Allen; Petter Andreas Steen; Brian Connolly; Arthur B. Sanders; Ahamed Idris; Stuart M. Cobbe

This scientific statement is the product of the Utstein ’95 Symposium held June 23-24, 1995, at Utstein Abbey, Island of Mosteroy, Rogaland County, Norway. Draft versions were circulated for comment to participants of the Utstein ’95 Symposium; the European Resuscitation Council Executive Committee; the Emergency Cardiac Care Committee of the American Heart Association; the Executive Committees of the Heart and Stroke Foundation of Canada, the Australian Resuscitation Council, and the Resuscitation Councils of Southern Africa; and several outside reviewers. The development of this statement was authorized by the Science Advisory and Coordinating Committee of the AHA and the Executive Committee of the European Resuscitation Council. We do not know the true effectiveness of in-hospital resuscitation. Observed results of the many published studies vary greatly. Studies originate from different settings and have different patient populations. Reports suffer from nonuniform nomenclature and variable inclusion definitions. Patients differ in the extent of comorbid conditions and interventions in place at the time of cardiac arrest. These differences prevent valid interhospital and intrahospital comparisons and make determining the effectiveness of current resuscitation techniques impossible. To develop these guidelines the task force used a consensus development process that originated with the “Utstein style” for reporting outcome data from out-of-hospital resuscitation events. Task force members performed an integrated review of published studies. An initial draft was prepared, discussed, and revised at a 2-day conference. Further drafts were revised and circulated among task force members and discussed face-to-face at three subsequent meetings. The task force defined a set of data elements that are essential or desirable for documenting in-hospital cardiac arrest. Data categories are hospital variables, patient variables, arrest variables, and outcome variables. The “In-Hospital Utstein-Style Template” was developed to summarize these data and recommendations for reporting a specific set of survival rates and outcomes. The task force …


Resuscitation | 1995

Recommended Guidelines for Uniform Reporting of Pediatric Advanced Life Support: The Pediatric Utstein Style

Arno Zaritsky; Vinay Nadkarni; Mary Fran Hazinski; George Foltin; Linda Quan; Jean Wright; Debra H. Fiser; David Zideman; Patricia J. O'Malley; Leon Chameides; Richard O. Cummins

This consensus document is an attempt to provide an organized method of reporting pediatric ALS data in out-of-hospital, emergency department, and in-hospital settings. For this methodology to gain wide acceptance, the task force encourages development of a common data set for both adult and pediatric ALS interventions. In addition, every effort should be made to ensure that consistent definitions are used in all age groups. As health care changes, we will all be challenged to document the effectiveness of what we currently do and show how new interventions or methods of treatment improve outcome and/or reduce cost. Only through collaborative research will we obtain the necessary data. For these reasons, and to improve the quality of care and patient outcomes, it is the hope of the task force that clinical researchers will follow the recommendations in this document. It is recognized that further refinements of this statement will be needed; these recommendations will improve only when researchers, clinicians, and EMS personnel use them, work with them, and modify them. Suggestions, recommendations, and other comments aimed at improving the reporting of pediatric resuscitation should be sent to Arno Zaritsky, MD, Eastern Virginia Medical School, Childrens Hospital of The Kings Daughter, Division of Critical Care Medicine, 601 Childrens Lane, Norfolk, VA 23507.


Resuscitation | 1997

Paediatric life support. An advisory statement by the Paediatric Life Support Working Group of the International Liaison Committee on Resuscitation.

Vinay Nadkarni; Mary Fran Hazinski; David Zideman; John Kattwinkel; Linda Quan; Robert Bingham; Arno Zaritsky; Jon Bland; Efraim Kramer; James Tiballs

This document reflects the deliberations of ILCOR. The epidemiology and outcome of paediatric cardiopulmonary arrest and the priorities, techniques and sequence of paediatric resuscitation assessments and interventions differ from those of adults. The working group identified areas of conflict and controversy in current paediatric basic and advanced life support guidelines, outlined solutions considered and made recommendations by consensus. The working group was surprised by the degree of conformity already existing in current guidelines advocated by the American Heart Association (AHA), the Heart and Stroke Foundation of Canada (HSFC), the European Resuscitation Council (ERC), the Australian Resuscitation Council (ARC), and the Resuscitation Council of Southern Africa (RCSA). Differences are currently based upon local and regional preferences, training networks and customs, rather than scientific controversy. Unresolved issues with potential for future universal application are highlighted. This document does not include a complete list of guidelines for which there is no perceived controversy and the algorithm/decision tree figures presented attempt to follow a common flow of assessments and interventions, in coordination with their adult counterparts. Survival following paediatric prehospital cardiopulmonary arrest occurs in only approximately 3-17% and survivors are often neurologically devastated. Most paediatric resuscitation reports have been retrospective in design and plagued with inconsistent resuscitation definitions and patient inclusion criteria. Careful and thoughtful application of uniform guidelines for reporting outcomes of advanced life support interventions using large, randomized, multicenter and multinational clinical trials are clearly needed. Paediatric advisory statements from ILCOR will, by necessity, be vibrant and evolving guidelines fostered by national and international organizations intent on improving the outcome of resuscitation for infants and children worldwide.


Pediatrics | 2010

Pediatric Advanced Life Support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care

Monica E. Kleinman; Leon Chameides; Stephen M. Schexnayder; Ricardo A. Samson; Mary Fran Hazinski; Dianne L. Atkins; Marc D. Berg; Allan R. de Caen; Ericka L. Fink; Eugene B. Freid; Robert W. Hickey; Bradley S. Marino; Vinay Nadkarni; Lester T. Proctor; Faiqa Qureshi; Kennith Sartorelli; Alexis A. Topjian; Elise W. van der Jagt; Arno Zaritsky

For best survival and quality of life, pediatric basic life support (BLS) should be part of a community effort that includes prevention, early cardiopulmonary resuscitation (CPR), prompt access to the emergency response system, and rapid pediatric advanced life support (PALS), followed by integrated post–cardiac arrest care. These 5 links form the American Heart Association (AHA) pediatric Chain of Survival (Figure 1), the first 3 links of which constitute pediatric BLS. FIGURE 1. Pediatric Chain of Survival. Rapid and effective bystander CPR can be associated with successful return of spontaneous circulation (ROSC) and neurologically intact survival in children following out-of-hospital cardiac arrest.1,–,3 Bystander resuscitation may have the greatest impact for out-of-hospital respiratory arrest,4 because survival rates >70% have been reported with good neurologic outcome.5,6 Bystander resuscitation may also have substantial impact on survival from primary ventricular fibrillation (VF), because survival rates of 20% to 30% have been documented in children with sudden out-of-hospital witnessed VF.7 Overall about 6%8 of children who suffer an out-of-hospital cardiac arrest and 8% of those who receive prehospital emergency response resuscitation survive, but many suffer serious permanent brain injury as a result of their arrest.7,9,–,14 Out-of-hospital survival rates and neurological outcome can be improved with prompt bystander CPR,3,6,15,–,17 but only about one third to one half of infants and children who suffer cardiac arrest receive bystander CPR.3,9,12,18 Infants are less likely to survive out-of-hospital cardiac arrest (4%) than children (10%) or adolescents (13%), presumably because many infants included in the arrest figure are found dead after a substantial period of time, most from sudden infant death syndrome (SIDS).8 As in adults, survival is …


Annals of Emergency Medicine | 1987

CPR in children

Arno Zaritsky; Vinay Nadkarni; Pamela R. Getson; Karen Kuehl

CPR has not been well studied in children and little is known about factors predictive of outcome. We conducted a study with three goals: longitudinal determination of demographic and laboratory data characterizing pediatric arrest victims; identification of factor(s) predictive of outcome; and determination of the prevalence of ionized hypocalcemia in pediatric arrest victims. All resuscitation efforts were documented during a one-year period in a 240-bed tertiary care childrens hospital. Patients were classified into two groups--respiratory arrest (RA, requiring only assisted ventilation), and cardiac arrest (CA, absence of palpable cardiac activity requiring closed-chest CPR). Collected data and laboratory tests were analyzed using a step-wise discriminant analysis to determine which factors were predictive of outcome. There were 113 arrests in 93 children; 53 were CA victims and 40 were RA victims. CA had a high in-hospital mortality (90.6%) compared to RA (32.5%). The population was young (55% less than 1 year old) and 87% had at least one chronic underlying disease. No laboratory or demographic value was significantly associated with eventual outcome. The number of doses of epinephrine in CA victims, or bicarbonate in RA victims, was associated with eventual outcome. None of 31 CA victims receiving more than two doses of epinephrine survived to discharge. Low ionized calcium concentrations (less than 3.5 mg/dL) were identified in ten patients; septic shock was present in seven, and chronic renal failure in two.(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation | 2005

Major Changes in the 2005 AHA Guidelines for CPR and ECC: Reaching the Tipping Point for Change

Mary Fran Hazinski; Vinay Nadkarni; Robert W. Hickey; Robert E. O’Connor; Lance B. Becker; Arno Zaritsky

The emergency cardiovascular care (ECC) scientists involved in the 2005 evidence evaluation process and the revision of the 2005 AHA Guidelines for CPR and ECC began and ended the process aware of the limitations of the resuscitation scientific evidence, optimistic about emerging data that documents the benefits of high-quality cardiopulmonary resuscitation (CPR), and determined to make recommendations that would increase survival from cardiac arrest and life-threatening emergencies. This editorial summarizes the factors that contributed to the tipping point, the point at which information and discussion either triggered support for major changes in the guidelines or reaffirmed existing recommendations. The scientists critically reviewed the sequence and priorities of the steps of CPR to identify those factors with the greatest potential impact on survival. They then developed recommendations to support those interventions that should be performed frequently and well. There was unanimous support for increased emphasis on ensuring that rescuers deliver high-quality CPR: rescuers need to provide an adequate number and depth of compressions, allow complete chest recoil after each compression, and minimize interruptions in chest compressions. The 2005 AHA Guidelines for CPR and ECC are based on the most comprehensive review of resuscitation literature ever published.1 The evidence evaluation process incorporated the input of 281 international resuscitation experts who evaluated research, topics, and hypotheses over a 36-month period before the 2005 Consensus Conference. The process included structured evidence evaluation, analysis, and documentation of the literature.2 It also included rigorous disclosure and management of potential conflicts of interest, a process summarized in two editorials.3,4 Cardiopulmonary resuscitation and emergency cardiovascular care is a relatively new field. The epidemiologic data is incomplete, and high-level evidence is insufficient to support many recommendations. Although sudden cardiac arrest (SCA) is responsible for an estimated 250 000 deaths out of the hospital in the United …

Collaboration


Dive into the Arno Zaritsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinay Nadkarni

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Kloeck

American Heart Association

View shared research outputs
Top Co-Authors

Avatar

David Zideman

Imperial College Healthcare

View shared research outputs
Top Co-Authors

Avatar

Efraim Kramer

American Heart Association

View shared research outputs
Top Co-Authors

Avatar

Faiqa Qureshi

Eastern Virginia Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge