Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnold J. Levine is active.

Publication


Featured researches published by Arnold J. Levine.


Cell | 1997

p53, the Cellular Gatekeeper for Growth and Division

Arnold J. Levine

The author would like to thank Maureen Murphy, Stuart Lutzker, and Deborah Freedman for critical input and advice. The author regrets the lack of citations for many important observations mentioned in the text, but their omission is made necessary by restrictions in the preparation of review manuscripts. The author thanks T. Barney for her help with the manuscript.


Nature | 2000

Surfing the p53 network

Bert Vogelstein; David P. Lane; Arnold J. Levine

The p53 tumour-suppressor gene integrates numerous signals that control cell life and death. As when a highly connected node in the Internet breaks down, the disruption of p53 has severe consequences.


Cell | 1990

The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53

Martin Scheffner; Werness Ba; Jon M. Huibregtse; Arnold J. Levine; Peter M. Howley

The E6 protein encoded by the oncogenic human papillomavirus types 16 and 18 is one of two viral products expressed in HPV-associated cancers. E6 is an oncoprotein which cooperates with E7 to immortalize primary human keratinocytes. Insight into the mechanism by which E6 functions in oncogenesis is provided by the observation that the E6 protein encoded by HPV-16 and HPV-18 can complex the wild-type p53 protein in vitro. Wild-type p53 gene has tumor suppressor properties, and is a target for several of the oncoproteins encoded by DNA tumor viruses. In this study we demonstrate that the E6 proteins of the oncogenic HPVs that bind p53 stimulate the degradation of p53. The E6-promoted degradation of p53 is ATP dependent and involves the ubiquitin-dependent protease system. Selective degradation of cellular proteins such as p53 with negative regulatory functions provides a novel mechanism of action for dominant-acting oncoproteins.


Cell | 1992

The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation

Jamil Momand; Gerard P. Zambetti; David C. Olson; Donna L. George; Arnold J. Levine

A cellular phosphoprotein with an apparent molecular mass of 90 kd (p90) that forms a complex with both mutant and wild-type p53 protein has been characterized, purified, and identified. The protein was identified as a product of the murine double minute 2 gene (mdm-2). The mdm-2 gene enhances the tumorigenic potential of cells when it is overexpressed and encodes a putative transcription factor. To determine if mdm-2 could modulate p53 transactivation, a p53-responsive element from the muscle creatine kinase gene was employed. A wild-type p53-expressing plasmid enhanced the expression of the p53-responsive element when cotransfected into cells that contain no endogenous p53. When a cosmid expressing mdm-2 was transfected with this p53-expressing plasmid, the transactivation of the p53-responsive element was inhibited. Thus, a product of the mdm-2 oncogene forms a tight complex with the p53 protein, and the mdm-2 oncogene can inhibit p53-mediated transactivation.


Science | 1996

Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.

Paul H. Kussie; Svetlana Gorina; Vincent Marechal; Brian Elenbaas; Jacque Moreau; Arnold J. Levine; Nikola P. Pavletich

The MDM2 oncoprotein is a cellular inhibitor of the p53 tumor suppressor in that it can bind the transactivation domain of p53 and downregulate its ability to activate transcription. In certain cancers, MDM2 amplification is a common event and contributes to the inactivation of p53. The crystal structure of the 109-residue amino-terminal domain of MDM2 bound to a 15-residue transactivation domain peptide of p53 revealed that MDM2 has a deep hydrophobic cleft on which the p53 peptide binds as an amphipathic α helix. The interface relies on the steric complementarity between the MDM2 cleft and the hydrophobic face of the p53 α helix and, in particular, on a triad of p53 amino acids—Phe19, Trp23, and Leu26—which insert deep into the MDM2 cleft. These same p53 residues are also involved in transactivation, supporting the hypothesis that MDM2 inactivates p53 by concealing its transactivation domain. The structure also suggests that the amphipathic α helix may be a common structural motif in the binding of a diverse family of transactivation factors to the TATA-binding protein-associated factors.


Cell | 1989

The p53 proto-oncogene can act as a suppressor of transformation.

Cathy A. Finlay; Philip W. Hinds; Arnold J. Levine

DNA clones of the wild-type p53 proto-oncogene inhibit the ability of E1A plus ras or mutant p53 plus ras-activated oncogenes to transform primary rat embryo fibroblasts. The rare clones of transformed foci that result from E1A plus ras plus wild-type p53 triple transfections all contain the p53 DNA in their genome, but the great majority fail to express the p53 protein. The three cell lines derived from such foci that express p53 all produce mutant p53 proteins with properties similar or identical to transformation-activated p53 proteins. The p53 mutants selected in this fashion (transformation in vitro) resemble the p53 mutants selected in tumors (in vivo). These results suggest that the p53 proto-oncogene can act negatively to block transformation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor

Zhenyu Yue; Shengkan Jin; Chingwen Yang; Arnold J. Levine; Nathaniel Heintz

The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.


Oncogene | 2005

The p53 pathway: positive and negative feedback loops

Sandra L. Harris; Arnold J. Levine

The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes produces proteins that interact with a large number of other signal transduction pathways in the cell and a number of positive and negative autoregulatory feedback loops act upon the p53 response. There are at least seven negative and three positive feedback loops described here, and of these, six act through the MDM-2 protein to regulate p53 activity. The p53 circuit communicates with the Wnt-beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF pathways and the cyclin G-PP2A, and p73 gene products. There are at least three different ubiquitin ligases that can regulate p53 in an autoregulatory manner: MDM-2, Cop-1 and Pirh-2. The meaning of this redundancy and the relative activity of each of these feedback loops in different cell types or stages of development remains to be elucidated. The interconnections between signal transduction pathways will play a central role in our understanding of cancer.


Nature Reviews Molecular Cell Biology | 2008

Transcriptional control of human p53-regulated genes

Todd Riley; Eduardo D. Sontag; Patricia Chen; Arnold J. Levine

The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.


Cell | 1979

Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells

Daniel I.H. Linzer; Arnold J. Levine

SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.

Collaboration


Dive into the Arnold J. Levine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harlan Robins

Institute for Advanced Study

View shared research outputs
Top Co-Authors

Avatar

Gareth L. Bond

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin D. Greenbaum

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge