Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arnold Szabó is active.

Publication


Featured researches published by Arnold Szabó.


Neuron | 2016

Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

Keisuke Yonehara; Michele Fiscella; Antonia Drinnenberg; Federico Esposti; Stuart Trenholm; Jacek Krol; Felix Franke; Brigitte Gross Scherf; Akos Kusnyerik; Jan Müller; Arnold Szabó; Josephine Jüttner; Francisco Cordoba; János Németh; Zoltán Zsolt Nagy; Francis Munier; Andreas Hierlemann; Botond Roska

Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract


Investigative Ophthalmology & Visual Science | 2014

Pathologic Alterations of the Outer Retina in Streptozotocin-Induced Diabetes

Anna Énzsöly; Arnold Szabó; Orsolya Kántor; Csaba Dávid; Péter Szalay; Klaudia Szabo; Ágoston Szél; János Németh; Ákos Lukáts

PURPOSE Neurodegeneration as an early event of diabetic retinopathy preceding clinically detectable vascular alterations is a widely proven issue today. While there is evidence for the impairment of color vision and contrast sensitivity in early diabetes, suggesting deteriorated photoreceptor function, the underlying neuropathology of these functional alterations is still unknown. The aim of the present study was to investigate the effects of early diabetes on the outer retinal cells. METHODS The retinal pigment epithelium, photopigment expression, and density and morphology of photoreceptors were studied using immunocytochemistry in streptozotocin-induced diabetes in two rat strains. The fine structure of photoreceptors and pigment epithelium was also investigated with transmission electron microscopy. RESULTS Here we found that retinal thickness was unchanged in diabetic animals and that no significant increase in the number of apoptotic cells was present. Although the density of cones expressing middle (M)- and shortwave (S)-sensitive opsins was similar in diabetic and control retinas, we detected remarkable morphologic signs of degeneration in the outer segments of diabetic rods, most M-cones, and some S-cones. A decrease in thickness and RPE65 protein immunoreactivity of the pigment epithelium were evident. Furthermore, an increased number of dual cones, coexpressing both M- and S-opsins, was detected at the peripheral retina of diabetic rats. CONCLUSIONS Degenerative changes of photoreceptors and pigment epithelium shown here prior to apoptotic loss of photoreceptors may contribute to functional alterations reported in diabetic human patients and different animal models, thus may serve as a potential model for testing the efficacy of neuroprotective agents in diabetes.


Brain Research Bulletin | 2008

Cerebral neurons involved in the innervation of both the adrenal gland and the ovary: A double viral tracing study

Ida E. Tóth; Péter Banczerowski; Zsolt Boldogkoi; Judit Tóth; Arnold Szabó; Béla Halász; Ida Gerendai

Previous studies using the viral transneuronal tracing technique demonstrated central autonomic circuits involved in the innervation of the adrenal gland and the ovary. Since the pattern of infection of central nervous system structures is similar after virus inoculation of the adrenal gland and the ovary, and, on the other hand, it is well documented that the activity of the hypothalamo-pituitary-adrenal axis exerts an inhibitory effect on the reproductive system, we investigated whether there are neurons that are transneuronally connected both with the adrenal gland and the ovary. The central circuitry involved in the innervation of the left adrenal and the left ovary was studied in individual rats by dual transneuronal tracing using isogenic recombinant strains (BDG and DS-RED) of Bartha strain of pseudorabies virus. Dual-infected neurons were detected in the ventrolateral medulla, nucleus of the solitary tract, caudal raphe nuclei, A5 cell group, and hypothalamic paraventricular nucleus. The results indicate that there are neurons in the central nervous system that contribute to the transneuronal innervation of both the adrenal gland and the ovary. The data suggest a new type of interaction, i.e. interaction at cellular level that might be involved in regulatory processes integrating the functional activity of the two organs.


PLOS ONE | 2013

Estrogen Receptor Alpha Is Expressed in Mesenteric Mesothelial Cells and Is Internalized in Caveolae upon Freund's Adjuvant Treatment

Petra Balogh; Arnold Szabó; Sándor Katz; István Likó; Attila Patócs; Anna L. Kiss

Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT) is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freunds adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β) into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α) as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs) or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques) indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.


Investigative Ophthalmology & Visual Science | 2010

In Vivo and In Vitro Development of S- and M-Cones in Rat Retina

Blanca Arango-Gonzalez; Arnold Szabó; Germán Pinzón-Duarte; Ákos Lukáts; Elke Guenther; Konrad Kohler

PURPOSE Organ cultures of the rodent retina could provide a powerful tool in the study of cone development and differentiation. Previous attempts, however, have failed to show M-cone development in organ cultures of the mouse and rat retina. This study mimicked the in vivo dynamics of S- and M-cone development in a culturing approach for the postnatal rat retina. METHODS Retinas of Brown Norway rats were collected at different developmental ages (postnatal day [P]0-P270) to study cone development in vivo. For culturing, the retinas were prepared from P0 to P2 animals and allowed to develop in organ culture for 2 to 15 days. Subsequently, opsin expression was analyzed immunohistochemically and morphometrically. RESULTS In control retinas, S-opsin was already expressed at birth, whereas M-opsin was detected after P4. The maximum density of S-opsin-positive cones was reached at P10 (∼17,000 cells/mm(2)) and of M-opsin-positive cones, at P12 (∼14,000 cells/mm(2)). The number of both cone types decreased gradually thereafter to ∼1,000 S-opsin cones/mm(2) and ∼4,000 M-opsin cones/mm(2) in the adult. In culture, both cone types developed with dynamics of appearance comparable to those in vivo, with a peak density of ∼12,300 cones/mm(2) for S-opsin and ∼7,500 cones/mm(2) for M-opsin labeling. CONCLUSIONS These results in rat retina showed for the first time that cone development and expression dynamics can be mimicked in organ culture. With this experimental approach, it will be possible to evaluate aspects of cone development under controlled experimental conditions and to elucidate factors crucial for proper cone differentiation.


Brain Structure & Function | 2016

Characterization of connexin36 gap junctions in the human outer retina

Orsolya Kántor; Zsigmond Benkő; Anna Énzsöly; Csaba Dávid; Angela Naumann; Roland Nitschke; Arnold Szabó; Emese Pálfi; József Orbán; Miklós Nyitrai; János Németh; Ágoston Szél; Ákos Lukáts; Béla Völgyi

Retinal connexins (Cx) form gap junctions (GJ) in key circuits that transmit average or synchronize signals. Expression of Cx36, -45, -50 and -57 have been described in many species but there is still a disconcerting paucity of information regarding the Cx makeup of human retinal GJs. We used well-preserved human postmortem samples to characterize Cx36 GJ constituent circuits of the outer plexiform layer (OPL). Based on their location, morphometric characteristics and co-localizations with outer retinal neuronal markers, we distinguished four populations of Cx36 plaques in the human OPL. Three of these were comprised of loosely scattered Cx36 plaques; the distalmost population 1 formed cone-to-rod GJs, population 2 in the mid-OPL formed cone-to-cone GJs, whereas the proximalmost population 4 likely connected bipolar cell dendrites. The fourth population (population 3) of Cx36 plaques conglomerated beneath cone pedicles and connected dendritic tips of bipolar cells that shared a common presynaptic cone. Overall, we show that the human outer retina displays a diverse cohort of Cx36 GJ that follows the general mammalian scheme and display a great functional diversity.


Inflammation Research | 2004

The inhibition of retinal inducible nitric oxide synthase overexpression and the attenuation of experimental uveitis by anti-inflammatory drugs in rats

Arnold Szabó; Ágnes Farkas; Rita Vámos; Tamas Bajor; András Hrabák

AbstractObjective and design:The effect of a steroid and a non-steroid anti-inflammatory drug on the inducible nitric oxide synthase (NOS II) in rats suffering from lipopolysaccharide (LPS)-induced uveoretinitis was studied. Treatments:Rats were injected with LPS to induce uveitis and divided into three groups: treated with LPS only, LPS + dexamethasone and LPS + indomethacin, respectively. Methods:Retinal, peritoneal macrophages and white blood cells were isolated. The activity and the expression of NOS II were followed by citrulline formation and Western blotting, respectively. Phagocytosis of bacteria was also measured. Results:The best induction of NOS II was achieved by the intravitreal administration of LPS. Dexamethasone and indomethacin significantly decreased the activity and the expression of inducible nitric oxide synthase in retinal tissue, peritoneal macrophages and white blood cells. LPS treatment also increased phagocytosis and neither dexamethasone nor indomethacin reversed this effect. Conclusions:The beneficial effects of these drugs in experimental uveitis are mediated, at least partly, by their inhibitory effect on NOS II induction.


Cell and Tissue Research | 2016

Calcium buffer proteins are specific markers of human retinal neurons

Orsolya Kántor; Szilvia Mezey; Jennifer Adeghate; Angela Naumann; Roland Nitschke; Anna Énzsöly; Arnold Szabó; Ákos Lukáts; János Németh; Zoltán Somogyvári; Béla Völgyi

Ca2+-buffer proteins (CaBPs) modulate the temporal and spatial characteristics of transient intracellular Ca2+-concentration changes in neurons in order to fine-tune the strength and duration of the output signal. CaBPs have been used as neurochemical markers to identify and trace neurons of several brain loci including the mammalian retina. The CaBP content of retinal neurons, however, varies between species and, thus, the results inferred from animal models cannot be utilised directly by clinical ophthalmologists. Moreover, the shortage of well-preserved human samples greatly impedes human retina studies at the cellular and network level. Our purpose has therefore been to examine the distribution of major CaBPs, including calretinin, calbindin-D28, parvalbumin and the recently discovered secretagogin in exceptionally well-preserved human retinal samples. Based on a combination of immunohistochemistry, Neurolucida tracing and Lucifer yellow injections, we have established a database in which the CaBP marker composition can be defined for morphologically identified cell types of the human retina. Hence, we describe the full CaBP make-up for a number of human retinal neurons, including HII horizontal cells, AII amacrine cells, type-1 tyrosine-hydroxylase-expressing amacrine cells and other lesser known neurons. We have also found a number of unidentified cells whose morphology remains to be characterised. We present several examples of the colocalisation of two or three CaBPs with slightly different subcellular distributions in the same cell strongly suggesting a compartment-specific division of labour of Ca2+-buffering by CaBPs. Our work thus provides a neurochemical framework for future ophthalmological studies and renders new information concerning the cellular and subcellular distribution of CaBPs for experimental neuroscience.


Histology and Histopathology | 2015

Novel features of neurodegeneration in the inner retina of early diabetic rats.

Anna Énzsöly; Arnold Szabó; Klaudia Szabo; Ágoston Szél; János Németh; Ákos Lukáts

The literature indicates that in diabetes retinal dysfunctions related to neural retinal alterations exist prior to clinically detectable vasculopathy. In a previous report, a detailed description about the alteration of the outer retina was given, where diabetic degeneration preceded apoptotic loss of cells (Enzsöly et al., 2014). Here, we investigated the histopathology of the inner retina in early diabetes using the same specimens. We examined rat retinas with immunohistochemistry and Western blotting, 12 weeks after streptozotocin induction of diabetes. Glial reactivity was observed in all diabetic retinal specimens; however, it was not detectable all over the retina, but appeared in randomly arranged patches, with little or no glia activation in between. Similarly, immunoreactivity of parvalbumin (staining mostly AII amacrine cells) was also decreased only in some regions. We propose that these focal changes appear prior to affecting the whole retina and overt loss of cells. In contrast to these, most other markers used (calretinin, recoverin, tyrosin hydroxylase anti-Brn-3a and also calbindin in the optic part of the retina) did not show any major alterations in the intensity of immunoreactivity or in the number of stained elements. Interestingly, under diabetic conditions, the labeling pattern of PKC-α and calbindin in the ciliary retina showed a clear resemblance to the pattern described during development. This observation is in line with our previous study, reporting an increase in the number of dual cones, coexpressing two photopigments, which is another common feature with developing retinas. These data may indicate a previously uninvestigated regenerative capacity in diabetic retina.


European Journal of Cell Biology | 2015

The subcellular compartmentalization of TGFβ-RII and the dynamics of endosomal formation during the signaling events: An in vivo study on rat mesothelial cells

Petra Balogh; Márton Magyar; Arnold Szabó; Nándor Müllner; István Likó; Attila Patócs; Anna L. Kiss

We previously showed that intraperitoneal administration of Freunds adjuvant treatment resulted in acute peritonitis and TGF-β was found to be one of the main organizers of the subsequent EMT in mesothelial cells. In the present study, we investigated whether TGF-β signaling molecules are present in mesothelial cells and how their compartmentalization pattern changes with the dynamics of inflammatory events in vivo. In addition, we tried to evaluate the turnover of endosomal compartments concomitant with the internalization of signaling molecules and examine whether caveola-mediated internalization might play a role in the termination of TGF-β signaling. Using immunocytochemical approach, we could detect TβRII in EEA1 positive compartments and as the inflammation progressed, at D3, the receptor appeared in caveolin-1 positive intracellular structures as well. The latter event was accompanied by the appearance of negative regulatory protein, Smad7 in caveolae. We also found EEA1 and caveolin-1 double positive vesicular structures that were corresponded to forming MVBs affirmed by our immuno-electron microscopical results. Fine structural, morphometric and immunoblot analysis proved that Cd63 positive multivesicular body (MVB) formation was significantly increased by D3 and the IP results confirmed that TβRII as well as caveolin-1 were strongly associated with these endosomal compartments at this time. In contrast, by the termination of inflammation, by D5, caveolin-1 was found to be associated with late endosomal marker, Rab7 and entirely degraded from the system. Despite the limitations of an in vivo system, our results provide both morphological and biochemical data about the endosomal compartments involved in the internalization of TβRII upon inflammatory stimuli. Furthermore, our study implies the possible role of caveola-mediated endocytosis in the attenuation of TGF-β signaling and highlight the significance of endosomal compartments via which caveolae might meet the classical endocytic pathway under in vivo inflammatory conditions.

Collaboration


Dive into the Arnold Szabó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Attila Patócs

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge