Arnold W. H. Jans
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arnold W. H. Jans.
The EMBO Journal | 1991
Van Aelst L; Stefan Hohmann; Zimmermann Fk; Arnold W. H. Jans; Johan M. Thevelein
Recently a new family of membrane proteins comprising the bovine lens fibre major intrinsic protein, soybean nodulin‐26 protein and the Escherichia coli glycerol facilitator has been described [M.E. Baker and M.H. Saier, Jr (1990) Cell, 60, 185–186]. These proteins have six putative membrane spanning domains and one (probably intracellular) intermembrane fragment is particularly well conserved. We have identified a new member of this family in the yeast Saccharomyces cerevisiae. It also possesses the six transmembrane domains and the highly conserved intermembrane sequence. In contrast to the other three proteins which are all approximately 280 amino acids long, the yeast protein has an N‐terminal extension of approximately 250 amino acids, which contains a string of 17 asparagine residues and a C‐terminal extension of approximately 150 amino acids. The gene, which we called FPS1 (for fdp1 suppressor), suppresses in single copy the growth defect on fermentable sugars of the yeast fdp1 mutant but it is not allelic to FDP1. The deficiency of the fdp1 mutant in glucose‐induced RAS‐mediated cAMP signalling and in rapid glucose‐induced changes in the activity of certain enzymes was not restored. Deletion of FPS1 does not cause any of the phenotypic deficiencies of the fdp1 mutant.
Microbiology | 1987
Johan M. Thevelein; Monique Beullens; F Honshoven; G Hoebeeck; K Detremerie; J A den Hollander; Arnold W. H. Jans
Addition of plasma membrane depolarizing agents, such as dinitrophenol (DNP) and azide, to cells of Saccharomyces cerevisiae under aerobic conditions, is known to cause an increase in the cAMP level within 15 s. We found that both compounds lowered the intracellular pH (measured by in vivo 32P-NMR) drastically within the same time period. Plasma membrane depolarization, however, was much slower: DNP and azide had no effect on the membrane potential during, respectively, the first 2 min and the first 10 min after addition. Apparently, the intracellular pH of yeast is much more sensitive to perturbation than the membrane potential. The effect of both compounds on the cAMP level was highly dependent on the extracellular pH: when the latter was raised, the effect disappeared completely between pH 6 and 7. A similar dependence on the extracellular pH was observed for the lowering of intracellular pH. Addition of organic acids, such as acetate and butyrate, at low pH and under aerobic conditions, also caused an immediate increase in the cAMP level and an immediate drop in the intracellular pH. These results suggest that agents such as DNP and azide do not raise the cAMP level in yeast cells because of their membrane depolarizing properties but because they lower the intracellular pH. Under anaerobic conditions, DNP, azide and organic acids were much less effective in increasing the cAMP level. Addition of a small amount of glucose, however, restored their capacity to enhance the cAMP level. This suggests that under anaerobic conditions and in the absence of glucose the ATP level is a limiting factor for cAMP synthesis.
Microbiology | 1987
Johan M. Thevelein; Monique Beullens; F Honshoven; G Hoebeeck; K Detremerie; B Griewel; J A den Hollander; Arnold W. H. Jans
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae is known to cause a rapid, transient increase in the cAMP level, which lasts for 1-2 min and induces a cAMP-dependent protein phosphorylation cascade. The glucose-induced cAMP signal cannot be explained solely on the basis of an increased ATP level. Transient membrane depolarization and transient intracellular acidification have been suggested as possible triggers for the cAMP peak. Addition of glucose to cells in which the plasma membrane had been depolarized still produced the increase in the cAMP level excluding membrane depolarization as the possible trigger. Using in vivo 31P NMR-spectroscopy we followed phosphate metabolism and the time course of the drop in the intracellular pH after addition of glucose with a time resolution of 15 s. Under aerobic conditions the initial pH and ATP level were high. On addition of glucose, they both showed a rapid, transient drop, which lasted for about 30 s. Under anaerobic conditions, the initial pH and ATP level were low and on addition of glucose they both increased relatively slowly compared to aerobic conditions. Several conditions were found in which the pH drop which occurs under aerobic conditions could be blocked completely without effect on the cAMP signal or without completely preventing it: addition of NH4Cl together with glucose at high extracellular pH and addition of a low concentration of glucose before a high concentration. Also, when glucose was added twice to the same cells no consistent relationship was observed between the pH drop and the cAMP peak. These results appear to exclude transient intracellular acidification as the trigger for the cAMP signal. Hence, we conclude that the effect of glucose cannot be explained on the basis of effects known to be caused by the membrane depolarizing compounds which cause increases in the cAMP level. A new, more specific kind of interaction appears to be involved.
Biochimica et Biophysica Acta | 1987
Arnold W. H. Jans; Kurt Amsler; Bernhard Griewel; Rolf K. H. Kinne
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringers solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringers solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringers, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringers solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.
Archives of Microbiology | 1990
Juan-Carlos Argüelles; Kaishusha Mbonyi; Linda Van Aelst; Mieke Vanhalewyn; Arnold W. H. Jans; Johan M. Thevelein
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.
Biochimica et Biophysica Acta | 1988
Arnold W. H. Jans; R. Willi Grunewald; Rolf K. H. Kinne
Renal papillary collecting duct cells have been postulated to adapt their intracellular osmolality to the largechanges in interstitial osmolality by changing their content of ‘non-perturbing’ organic osmolytes such as sorbitol and myo-inositol. 13C-NMR was used in this study to elucidate the metabolic pathways leading to a synthesis of those compounds. Incubation of rabbit renal papillary tissue with [1-13C]glucose showed label scrambling mainly into sorbitol (C-1) and lactate (C-3). This result confirms activity of aldose reductase and glycolytic enzymes in renal papillary cells. Using [3-13C]alanine or [2-13C]pyruvate as carbon source, 13C-labeling of sorbitol and myo-inositol was observed, indicating that renal papillary tissue possesses, in addition, gluconeogenic activity. The latter assumption is supported by the result that in enzyme assays rabbit kidney papilla and isolated rat kidney papillary collecting duct cells show significant fructose-1,6-bis-phosphatase activity.
Biochimica et Biophysica Acta | 1988
Arnold W. H. Jans; Dieter Leibfritz
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine L-[3-13C]alanine, or D,L-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of gamma-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courses showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of L-alanine and 60% of L-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine, alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% when labelled L-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled D,L-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.
Carbohydrate Research | 1989
Eric Messens; Marc Van Montagu; André De Bruyn; Arnold W. H. Jans
Abstract The title apigenin triglycoside was isolated (4 mg/6000 seeds) by reversephase column chromatography as the major u.v.-absorbing compound in the exudate of germinating seeds of Sesbania rostrata . The structure was assigned on the basis of u.v. spectra, f.a.b.-mass-spectral and 2D-n.m.r. data. The triglycoside was released continuously from the germinating seeds, but at a decreasing rate during the first two weeks.
Journal of Carbohydrate Chemistry | 1986
Eric Messens; A. Lenaerts; Marc Van Montagu; André De Bruyn; Arnold W. H. Jans; Georges Van Binst
Abstract The 1H NMR data of agrocinopine in D2O solution as extracted from standard 2D NMR experiments, along with 1D 31P and 13C NMR experiments allow to support the trisaccharide structure originally proposed on basis of comparative 13C NMR measurements.
Journal of Molecular Medicine | 1988
Rolf K. H. Kinne; Iris Pavenstädt-Grupp; Clemens Grupp; Arnold W. H. Jans; Rolf Willi Grunewald
Taking into account recent results obtained with isolated papillary collecting duct cells the metabolic pathways and membrane transport systems of collecting duct cells are reviewed. The plasma membranes contain a luminal proton AT-Pase and a contraluminal Cl−/HCO 3 − exchanger which are involved in proton secretion; a luminal sodium channel and a contraluminal Na+/K+-AT-Pase for sodium reabsorption; a K+ channel for potassium secretion, and a Na+/K+/Cl− cotransport system for chloride transport and/or volume regulation. The plasma membranes also possess transport systems for organic substrates and organic osmolytes. D-glucose, the main substrate of the papillary collecting duct is taken up into the cell by a sodium-independent D-glucose transport system with aK m of 1.2 mM. The plasma membrane also contains mechanisms which mediate sorbitol release into the medium. This mechanism is stimulated when cells are exposed to media with a low osmolality and inhibited when cells are exposed to media with a high osmolality.SummaryTaking into account recent results obtained with isolated papillary collecting duct cells the metabolic pathways and membrane transport systems of collecting duct cells are reviewed. The plasma membranes contain a luminal proton AT-Pase and a contraluminal Cl−/HCO3− exchanger which are involved in proton secretion; a luminal sodium channel and a contraluminal Na+/K+-AT-Pase for sodium reabsorption; a K+ channel for potassium secretion, and a Na+/K+/Cl− cotransport system for chloride transport and/or volume regulation. The plasma membranes also possess transport systems for organic substrates and organic osmolytes. D-glucose, the main substrate of the papillary collecting duct is taken up into the cell by a sodium-independent D-glucose transport system with aKm of 1.2 mM. The plasma membrane also contains mechanisms which mediate sorbitol release into the medium. This mechanism is stimulated when cells are exposed to media with a low osmolality and inhibited when cells are exposed to media with a high osmolality.D-glucose is used as metabolic substrate in anaerobic and aerobic glycolysis and as precursor for sorbitol synthesis via the aldose reductase, which is highly enriched in papillary collecting duct cells. The cells also show gluconeogenic activity as evidenced by incorporation of labeled carbon from L-alanine into glycerol, sorbitol, and myo-inositol. Accordingly, the cells show fructose-1,6-biphosphatase activity. Sorbitol synthesis in contrast to sorbitol permeability is not affected by osmolarity.These studies indicate that transmembrane transport and intracellular metabolism of papillary cells strongly depend on the composition of the interstitium and show a plasticity which allows the cells to cope successfully with the metabolic and osmotic challenges connected with urine concentration or dilution.Taking into account recent results obtained with isolated papillary collecting duct cells the metabolic pathways and membrane transport systems of collecting duct cells are reviewed. The plasma membranes contain a luminal proton AT-Pase and a contraluminal Cl-/HCO3- exchanger which are involved in proton secretion; a luminal sodium channel and a contraluminal Na+/K+-AT-Pase for sodium reabsorption; a K+ channel for potassium secretion, and a Na+/K+/Cl- cotransport system for chloride transport and/or volume regulation. The plasma membranes also possess transport systems for organic substrates and organic osmolytes. D-glucose, the main substrate of the papillary collecting duct is taken up into the cell by a sodium-independent D-glucose transport system with a Km of 1.2 mM. The plasma membrane also contains mechanisms which mediate sorbitol release into the medium. This mechanism is stimulated when cells are exposed to media with a low osmolality and inhibited when cells are exposed to media with a high osmolality. D-glucose is used as metabolic substrate in anaerobic and aerobic glycolysis and as precursor for sorbitol synthesis via the aldose reductase, which is highly enriched in papillary collecting duct cells. The cells also show gluconeogenic activity as evidenced by incorporation of labeled carbon from L-alanine into glycerol, sorbitol, and myo-inositol. Accordingly, the cells show fructose-1,6-biphosphatase activity. Sorbitol synthesis in contrast to sorbitol permeability is not affected by osmolarity.(ABSTRACT TRUNCATED AT 250 WORDS)