Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aron B. Fisher is active.

Publication


Featured researches published by Aron B. Fisher.


Annals of Emergency Medicine | 1995

Delayed Neuropsychologic Sequelae After Carbon Monoxide Poisoning: Prevention by Treatment With Hyperbaric Oxygen

Stephen R. Thom; Robert L Taber; I. Mendiguren; James M. Clark; Kevin R. Hardy; Aron B. Fisher

STUDY OBJECTIVE Carbon monoxide (CO) poisoning is a major clinical problem. The risk of morbidity and the most effective treatment have not been clearly established. We measured the incidence of delayed neurologic sequelae (DNS) in a group of patients acutely poisoned with CO and tested the null hypothesis that the incidence would not be affected by treatment with hyperbaric oxygen (HBO). DESIGN We conducted a prospective, randomized study in patients with mild to moderate CO poisoning who presented within 6 hours. Patients had no history of loss of consciousness or cardiac instability. INTERVENTIONS The incidence of DNS was compared between groups treated with ambient pressure 100% oxygen or HBO (2.8 ATA for 30 minutes followed by 2.0 ATA oxygen for 90 minutes). DNS were defined as development of new symptoms after oxygen treatment plus deterioration on one or more subtests of a standardized neuropsychologic screening battery. RESULTS In 7 of 30 patients (23%), DNS developed after treatment with ambient-pressure oxygen, whereas no sequelae developed in 30 patients after HBO treatment (P < .05). DNS occurred 6 +/- 1 (mean +/- SE) days after poisoning and persisted 41 +/- 8 days. At follow-up 4 weeks after poisoning, patients who had been treated with ambient pressure oxygen and had not sustained DNS exhibited a worse mean score on one subtest, Trail Making, compared with the group treated with HBO and with a control group matched according to age and education level. There were no differences in scores between the control group and the hyperbaric oxygen group. CONCLUSION DNS after CO poisoning cannot be predicted on the basis of a patients clinical history or CO level. HBO treatment decreased the incidence of DNS after CO poisoning.


Journal of Biological Chemistry | 1999

Phospholipid Hydroperoxides Are Substrates for Non-selenium Glutathione Peroxidase

Aron B. Fisher; Chandra Dodia; Yefim Manevich; Jin-Wen Chen; Sheldon I. Feinstein

This study investigated phospholipid hydroperoxides as substrates for non-selenium GSH peroxidase (NSGPx), an enzyme also called 1-Cys peroxiredoxin. Recombinant human NSGPx expressed in Escherichia coli from a human cDNA clone (HA0683) showed GSH peroxidase activity withsn-2-linolenoyl- orsn-2-arachidonoyl-phosphatidylcholine hydroperoxides as substrate; NADPH or thioredoxin could not substitute for GSH. Activity did not saturate with GSH, and kinetics were compatible with a ping-pong mechanism; kinetic constants (mM−1min−1) were k 1 = 1–3 × 105 and k 2 = 4–11 × 104. In the presence of 0.36 mm GSH, apparentK m was 120–130 μm and apparentV max was 1.5–1.6 μmol/min/mg of protein. Assays with H2O2 and organic hydroperoxides as substrate indicated activity similar to that with phospholipid hydroperoxides. Maximal enzymatic activity was at pH 7–8. Activity with phospholipid hydroperoxide substrate was inhibited noncompetitively by mercaptosuccinate with K i 4 μm. The enzyme had no GSH S-transferase activity. Bovine cDNA encoding NSGPx, isolated from a lung expression library using a polymerase chain reaction probe, showed >95% similarity to previously published human, rat, and mouse sequences and does not contain the TGA stop codon, which is translated as selenocysteine in selenium-containing peroxidases. The molecular mass of bovine NSGPx deduced from the cDNA is 25,047 Da. These results identify a new GSH peroxidase that is not a selenoenzyme and can reduce phospholipid hydroperoxides. Thus, this enzyme may be an important component of cellular antioxidant defense systems.


Proceedings of the National Academy of Sciences of the United States of America | 2002

1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage

Yefim Manevich; Tom Sweitzer; Jhang Ho Pak; Sheldon I. Feinstein; Vladimir R. Muzykantov; Aron B. Fisher

1-Cys peroxiredoxin (1-cysPrx) is a novel antioxidant enzyme able to reduce phospholipid hydroperoxides in vitro by using glutathione as a reductant. This enzyme is widely expressed and is enriched in lungs. A fusion protein of green fluorescent protein with 1-cysPrx was stably expressed in a lung-derived cell line (NCI-H441) lacking endogenous enzyme. Overexpressing cells (C17 or C48) degraded H2O2 and t-butylhydroperoxide more rapidly and showed decreased sensitivity to oxidant stress as measured by 51Cr release. On exposure to •OH generated by Cu2+-ascorbate (Asc), overexpressing cells compared with H441 showed less increase in thiobarbituric acid-reactive substance and phosphatidylcholine hydroperoxide content. This effect was reversed by depletion of cellular glutathione. Diphenyl-1-pyrenoylphosphonium fluorescence, used as a real-time probe of membrane phospholipid peroxidation, increased immediately on exposure to Cu2+-Asc and was abolished by preincubation of cells with Trolox (a soluble vitamin E) or Tempol (a radical scavenger). The rate of diphenyl-1-pyrenoylphosphonium fluorescence increase with Cu2+-Asc exposure was markedly attenuated in C17 and C48 cells as compared with H441. Annexin V-Cy3 was used to detect phosphatidylserine translocation from the inner to outer leaflet of the plasma membrane. Cu2+-Asc treatment induced phosphatidylserine translocation within 2 h in H441 cells but none was observed in C48 cells up to 24 h. These results indicate that 1-cysPrx can scavenge peroxides but in addition can reduce peroxidized membrane phospholipids. Thus, the enzyme can protect cells against oxidant-induced plasma membrane damage, thereby playing an important role in cellular defense against oxidant stress.


Antioxidants & Redox Signaling | 2011

Peroxiredoxin 6: A Bifunctional Enzyme with Glutathione Peroxidase and Phospholipase A2 Activities

Aron B. Fisher

Peroxiredoxin 6 (Prdx6) is the prototype and the only mammalian 1-Cys member of the Prdx family. Major differences from 2-Cys Prdxs include the use of glutathione (GSH) instead of thioredoxin as the physiological reductant, heterodimerization with πGSH S-transferase as part of the catalytic cycle, and the ability either to reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or to hydrolyze the sn-2 ester (alkyl) bond of phospholipids (phospholipase A(2) [PLA(2)] activity). The bifunctional protein has separate active sites for peroxidase (C47, R132, H39) and PLA(2) (S32, D140, H26) activities. These activities are dependent on binding of the protein to phospholipids at acidic pH and to oxidized phospholipids at cytosolic pH. Prdx6 can be phosphorylated by MAP kinases at T177, which markedly increases its PLA(2) activity and broadens its pH-activity spectrum. Prdx6 is primarily cytosolic but also is targeted to acidic organelles (lysosomes, lamellar bodies) by a specific targeting sequence (amino acids 31-40). Oxidant stress and keratinocyte growth factor are potent regulators of Prdx6 gene expression. Prdx6 has important roles in both antioxidant defense based on its ability to reduce peroxidized membrane phospholipids and in phospholipid homeostasis based on its ability to generate lysophospholipid substrate for the remodeling pathway of phospholipid synthesis.


Journal of Clinical Investigation | 1991

Oxygen-dependent lipid peroxidation during lung ischemia

Aron B. Fisher; C. Dodia; Z T Tan; I Ayene; Roderic G. Eckenhoff

The effect of alveolar oxygen tension on lung lipid peroxidation during lung ischemia was evaluated by using isolated rat lungs perfused with synthetic medium. After a 5-min equilibration period, global ischemia was produced by discontinuing perfusion while ventilation continued with gas mixtures containing 5% CO2 and a fixed oxygen concentration between 0 and 95%. Lipid peroxidation was assessed by measurement of tissue thiobarbituric acid-reactive products and conjugated dienes. Control studies (no ischemia) showed no change in parameters of lipid peroxidation during 1 h of perfusion and ventilation with 20% or 95% O2. With 60 min of ischemia, there was increased lipid peroxidation which varied with oxygen content of the ventilating gas and was markedly inhibited by ventilation with N2. Perfusion with 5-, 8-, 11-, 14-eicosatetraynoic acid indicated that generation of eicosanoids during ischemia accounted for approximately 40-50% of lung lipid peroxide production. Changes of CO2 content of the ventilating gas (to alter tissue pH) or of perfusate glucose concentration had no effect on lipid peroxidation during ischemia, but perfusion at 8% of the normal flow rate prevented lipid peroxidation. Lung dry/wet weight measured after 3 min of reperfusion showed good correlation between lung fluid accumulation and lipid peroxidation. These results indicate that reperfusion is not necessary for lipid peroxidation with ischemic insult of the lung and provide evidence that elevated PO2 during ischemia accelerates the rate of tissue injury.


Journal of Biological Chemistry | 1997

Identification of a human cDNA clone for lysosomal type Ca2+-independent phospholipase A2 and properties of the expressed protein.

Tae Suk Kim; Chennarayapatna S. Sundaresh; Sheldon I. Feinstein; Chandra Dodia; William R. Skach; Mahendra Kumar Jain; Takahiro Nagase; Naohiko Seki; Ken Ichi Ishikawa; Nobuo Nomura; Aron B. Fisher

A Ca2+-independent phospholipase A2 (PLA2) maximally active at pH 4 and specifically inhibited by the transition-state analogue 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) was isolated from rat lungs. The sequence for three internal peptides (35 amino acids) was used to identify a 1653-base pair cDNA clone (HA0683) from a human myeloblast cell line. The deduced protein sequence of 224 amino acids contained a putative motif (GXSXG) for the catalytic site of a serine hydrolase, but showed no significant homology to known phospholipases. Translation of mRNA produced from this clone in both a wheat germ system and Xenopus oocytes showed expression of PLA2 activity with properties similar to the rat lung enzyme. Apparent kinetic constants for PLA2 with dipalmitoylphosphatidylcholine as substrate were Km = 0.25 mM and Vmax = 1.89 nmol/h. Activity with alkyl ether phosphatidylcholine as substrate was decreased significantly compared with diacylphosphatidylcholine. Significant lysophospholipase, phospholipase A1, or 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase activity was not observed. Enzyme activity was insensitive to p-bromophenacyl bromide, bromoenol lactone, trifluoromethylarachidonoyl ketone, mercaptoethanol, and ATP, but was inhibited by MJ33 and diethyl p-nitrophenyl phosphate, a serine protease inhibitor. SDS-polyacrylamide gel electrophoresis with autoradiography of the translated [35S]methionine-labeled protein confirmed a molecular mass of 25.8 kDa, in good agreement with the enzyme isolated from rat lung. By Northern blot analysis, mRNA corresponding to this clone was present in both rat lung and isolated rat granular pneumocytes. These results represent the first molecular cloning of a cDNA for the lysosomal type Ca2+-independent phospholipase A2 group of enzymes.


Journal of Biological Chemistry | 2002

An antisense oligonucleotide to 1-cys peroxiredoxin causes lipid peroxidation and apoptosis in lung epithelial cells.

Jhang Ho Pak; Yefim Manevich; Han-Suk Kim; Sheldon I. Feinstein; Aron B. Fisher

1-cys peroxiredoxin (1-cysPrx), a member of the peroxiredoxin superfamily, reduces phospholipid hydroperoxides as well as organic peroxides and H2O2. To determine the physiological function(s) of 1-cysPrx, we have used an antisense strategy to suppress endogenous 1-cysPrx in L2 cells, a rat lung epithelial cell line. A 25-base antisense morpholino oligonucleotide was designed to bind a complementary sequence overlapping the translational start site (−18 to +7) in the rat 1-cysPrx mRNA, blocking protein synthesis. Treatment with an antisense oligonucleotide for 48 h resulted in approximately 60% suppression of the 1-cysPrx protein content as measured by immunoblot analysis and an approximately 44% decrease of glutathione peroxidase activity as compared with random oligonucleotide treated and control (vehicle only) cells. Accumulation of phosphatidylcholine hydroperoxide in plasma membranes was demonstrated by high pressure liquid chromatography assay for conjugated dienes (260 pmol/106cells for antisense versus 70 pmol/106 cells for random oligonucleotide and control cells) and by fluorescence of diphenyl-1-pyrenylphosphine, a probe for lipid peroxidation. The percentage of cells showing positive staining for annexin V and propidium iodide after antisense treatment was 40% at 28 h and 80% at 48 h. TdT-mediated dUTP nick end labeling assay at 48 h indicated DNA fragmentation in antisense-treated cells that was blocked by prior infection with adenovirus encoding 1-cysPrx or by pretreatment with a vitamin E analogue. The results indicate that 1-cysPrx can function in the intact cell as an antioxidant enzyme to reduce the accumulation of phospholipid hydroperoxides and prevent apoptotic cell death.


Free Radical Biology and Medicine | 2009

Oxidant stress stimulates expression of the human peroxiredoxin 6 gene by a transcriptional mechanism involving an antioxidant response element

Ibrul Chowdhury; Yiqun Mo; Ling Gao; Altaf S. Kazi; Aron B. Fisher; Sheldon I. Feinstein

Peroxiredoxin 6 (Prdx6) is a unique antioxidant enzyme that can reduce phospholipid and other hydroperoxides. A549 cells, a human lung-derived cell line, express both Prdx6 and Nrf2, a transcription factor that binds to antioxidant-response elements (AREs) and promotes expression of antioxidant genes. Treatment of A549 cells with 500 microM H(2)O(2) increased Prdx6 mRNA levels 2.5-fold, whereas treatment with 400 microM H(2)O(2) or 200 microM tert-butylhydroquinone (t-BHQ) triggered a corresponding 2.5-fold increase in reporter gene activity in A549 cells transfected with the pSEAP2:Basic vector (BD Bioscience), containing 1524 nucleotides of the human Prdx6 promoter region. Deletion of a consensus ARE sequence present between positions 357 and 349 before the start of transcription led to a striking decrease in both basal and H(2)O(2)- or t-BHQ-induced activation in A549 cells and H(2)O(2)-induced activation in primary rat alveolar type II cells. Cotransfection with Nrf2 stimulated the Prdx6 promoter in an ARE-dependent manner, whereas it was negatively regulated by Nrf3. siRNA targeting Nrf2 down-regulated reporter gene expression, whereas siRNA targeting the Nrf2 repressor, Keap1, up-regulated it. Binding of Nrf2 to the ARE sequence in chromatin was confirmed by PCR after chromatin immunoprecipitation. These data demonstrate that the ARE within the Prdx6 promoter is a key regulator of basal transcription of the Prdx6 gene and of its inducibility under conditions of oxidative stress.


Journal of Cell Biology | 2005

Selective role for superoxide in InsP3 receptor–mediated mitochondrial dysfunction and endothelial apoptosis

Muniswamy Madesh; Brian J. Hawkins; Tatyana N. Milovanova; Cunnigaiper D. Bhanumathy; Suresh K. Joseph; Satish P. RamachandraRao; Kumar Sharma; Tomohiro Kurosaki; Aron B. Fisher

Reactive oxygen species (ROS) play a divergent role in both cell survival and cell death during ischemia/reperfusion (I/R) injury and associated inflammation. In this study, ROS generation by activated macrophages evoked an intracellular Ca2+ ([Ca2+]i) transient in endothelial cells that was ablated by a combination of superoxide dismutase and an anion channel blocker. [Ca2+]i store depletion, but not extracellular Ca2+ chelation, prevented [Ca2+]i elevation in response to O2 .− that was inositol 1,4,5-trisphosphate (InsP3) dependent, and cells lacking the three InsP3 receptor (InsP3R) isoforms failed to display the [Ca2+]i transient. Importantly, the O2 .−-triggered Ca2+ mobilization preceded a loss in mitochondrial membrane potential that was independent of other oxidants and mitochondrially derived ROS. Activation of apoptosis occurred selectively in response to O2 .− and could be prevented by [Ca2+]i buffering. This study provides evidence that O2 .− facilitates an InsP3R-linked apoptotic cascade and may serve a critical function in I/R injury and inflammation.


Journal of Biological Chemistry | 2007

ABCA3 Is Critical for Lamellar Body Biogenesis in Vivo

Naeun Cheong; Huayan Zhang; Muniswamy Madesh; Ming Zhao; Kevin Yu; Chandra Dodia; Aron B. Fisher; Rashmin C. Savani; Henry Shuman

Mutations in ATP-binding cassette transporter A3 (human ABCA3) protein are associated with fatal respiratory distress syndrome in newborns. We therefore characterized mice with targeted disruption of the ABCA3 gene. Homozygous Abca3–/– knock-out mice died soon after birth, whereas most of the wild type, Abca3+/+, and heterozygous, Abca3+/–, neonates survived. The lungs from E18.5 and E19.5 Abca3–/– mice were less mature than wild type. Alveolar type 2 cells from Abca3–/– embryos contained no lamellar bodies, and expression of mature SP-B protein was disrupted when compared with the normal lung surfactant system of wild type embryos. Small structural and functional differences in the surfactant system were seen in adult Abca3+/– compared with Abca3+/+ mice. The heterozygotes had fewer lamellar bodies, and the incorporation of radiolabeled substrates into newly synthesized disaturated phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylserine in both lamellar bodies and surfactant was lower than in Abca3+/+ mouse lungs. In addition, since the fraction of near term Abca3–/– embryos was significantly lower than expected from Mendelian inheritance ABCA3 probably plays roles in development unrelated to surfactant. Collectively, these findings strongly suggest that ABCA3 is necessary for lamellar body biogenesis, surfactant protein-B processing, and lung development late in gestation.

Collaboration


Dive into the Aron B. Fisher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandra Dodia

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Shampa Chatterjee

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yefim Manevich

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abu B. Al-Mehdi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Avinash Chander

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sandra R. Bates

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Elena M. Sorokina

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jian-Qin Tao

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge