Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aron H. Lichtman is active.

Publication


Featured researches published by Aron H. Lichtman.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase

Benjamin F. Cravatt; Kristin Demarest; Matthew P. Patricelli; Michael H. Bracey; Dan K. Giang; Billy R. Martin; Aron H. Lichtman

The medicinal properties of marijuana have been recognized for centuries, but clinical and societal acceptance of this drug of abuse as a potential therapeutic agent remains fiercely debated. An attractive alternative to marijuana-based therapeutics would be to target the molecular pathways that mediate the effects of this drug. To date, these neural signaling pathways have been shown to comprise a cannabinoid receptor (CB1) that binds the active constituent of marijuana, tetrahydrocannabinol (THC), and a postulated endogenous CB1 ligand anandamide. Although anandamide binds and activates the CB1 receptor in vitro, this compound induces only weak and transient cannabinoid behavioral effects in vivo, possibly a result of its rapid catabolism. Here we show that mice lacking the enzyme fatty acid amide hydrolase (FAAH−/−) are severely impaired in their ability to degrade anandamide and when treated with this compound, exhibit an array of intense CB1-dependent behavioral responses, including hypomotility, analgesia, catalepsy, and hypothermia. FAAH−/−-mice possess 15-fold augmented endogenous brain levels of anandamide and display reduced pain sensation that is reversed by the CB1 antagonist SR141716A. Collectively, these results indicate that FAAH is a key regulator of anandamide signaling in vivo, setting an endogenous cannabinoid tone that modulates pain perception. FAAH may therefore represent an attractive pharmaceutical target for the treatment of pain and neuropsychiatric disorders.


Nature Chemical Biology | 2009

Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects

Jonathan Z. Long; Weiwei Li; Lamont Booker; James J. Burston; Steven G. Kinsey; Joel E. Schlosburg; Franciso J Pavón; Antonia Serrano; Dana E. Selley; Loren H. Parsons; Aron H. Lichtman; Benjamin F. Cravatt

2-Arachidonoylglycerol (2-AG) and anandamide are endocannabinoids that activate cannabinoid receptors CB1 and CB2. Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for anandamide, is mediated by fatty acid amide hydrolase (FAAH) and, for 2-AG, is thought to involve monoacylglycerol lipase (MAGL). FAAH inhibitors produce a select subset of the behavioral effects observed with CB1 agonists, intimating a functional segregation of endocannabinoid signaling pathways in vivo. Testing this hypothesis, however, requires specific tools to independently block anandamide and 2-AG metabolism. Here, we report a potent and selective inhibitor of MAGL, JZL184, that, upon administration to mice, raises brain 2-AG by 8-fold without altering anandamide. JZL184-treated mice exhibited a broad array of CB1-dependent behavioral effects, including analgesia, hypothermia, and hypomotility. These data indicate that 2-AG endogenously modulates several behavioral processes classically associated with the pharmacology of cannabinoids and point to overlapping and unique functions for 2-AG and anandamide in vivo.


Science | 2011

Endocannabinoid Hydrolysis Generates Brain Prostaglandins That Promote Neuroinflammation

Daniel K. Nomura; Bradley E. Morrison; Jacqueline L. Blankman; Jonathan Z. Long; Steven G. Kinsey; Maria Cecilia G. Marcondes; Anna M. Ward; Yun Kyung Hahn; Aron H. Lichtman; Bruno Conti; Benjamin F. Cravatt

A new tissue-specific pathway for the synthesis of proinflammatory prostaglandins is described. Phospholipase A2(PLA2) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)–mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA2. These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.


Nature Neuroscience | 2010

Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system

Joel E. Schlosburg; Jacqueline L. Blankman; Jonathan Z. Long; Daniel K. Nomura; Bin Pan; Steven G. Kinsey; Peter T. Nguyen; Divya Ramesh; Lamont Booker; James J. Burston; Elizabeth A. Thomas; Dana E. Selley; Laura J. Sim-Selley; Qing-song Liu; Aron H. Lichtman; Benjamin F. Cravatt

Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. We found that a similar form of functional antagonism was produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol. After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of Mgll (encoding MAGL). Chronic MAGL blockade also caused physical dependence, impaired endocannabinoid-dependent synaptic plasticity and desensitized brain CB1 receptors. These data contrast with blockade of fatty acid amide hydrolase, an enzyme that degrades the other major endocannabinoid anandamide, which produced sustained analgesia without impairing CB1 receptors. Thus, individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively.


Psychopharmacology | 1995

Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats

Aron H. Lichtman; K. R. Dimen; Billy R. Martin

The purpose of the present study was to investigate the disruptive effects of cannabinoids on working memory as assessed in the eight-arm radial-maze. Systemic administration of Δ9-THC, WIN-55,212-2, and CP-55,940 increased the number of errors committed in the radial-maze. CP-55,940 was the most potent cannabinoid in impairing memory (ED50=0.13 mg/kg). Δ9-THC and WIN-55,212-2 disrupted mazechoice accuracy at equipotent doses (ED50 values =2.1 and 2.2 mg/kg, respectively). In addition, systemic administration of each of these agents retarded completion time. Whereas the doses of Δ9-THC and CP-55,940 required to retard maze performance were higher than those needed to increase error numbers, WIN-55,212-2 was equipotent in both of these measures. On the other hand, neither anandamide, the putative endogenous cannabinoid ligand, nor cannabidiol, an inactive naturally occurring cannabinoid, had any apparent effects on memory. A second aim of this study was to elucidate the neuroanatomical substrates mediating the disruptive effects of cannabinoids on memory. Intrahippocampal injections of CP-55,940 impaired maze performance in a dose-dependent manner (ED50=8 µg/rat), but did not retard the amount of time required to complete the maze. The effects of intrahippocampal CP-55,940 were apparently specific to cognition because no other cannabinoid pharmacological effects (e.g., antinociception, hypothermia, and catalepsy) were detected. This dissociation between choice accuracy in the radial-maze and other cannabinoid pharmacological effects suggests that the working memory deficits produced by cannabinoids may be mediated by cannabinoid receptors in the hippocampus.


Pain | 2004

Mice lacking fatty acid amide hydrolase exhibit a cannabinoid receptor-mediated phenotypic hypoalgesia

Aron H. Lichtman; Christopher C. Shelton; Tushar Advani; Benjamin F. Cravatt

&NA; Although the N‐arachidonoyl ethanolamine (anandamide) binds to cannabinoid receptors and has been implicated in the suppression of pain, its rapid catabolism in vivo by fatty acid amide hydrolase (FAAH) has presented a challenge in investigating the physiological functions of this endogenous cannabinoid. In order to test whether anandamide and other non‐cannabinoid fatty amides modulate nociception, we compared FAAH (+/+) and (−/−) mice in the tail immersion, hot plate, and formalin tests, as well as for thermal hyperalgesia in the carrageenan and the chronic constriction injury (CCI) models. FAAH (−/−) mice exhibited a CB1 receptor‐mediated phenotypic hypoalgesia in thermal nociceptive tests. These mice also exhibited CB1 receptor‐mediated hypoalgesia in both phases of the formalin test accompanied with a phenotypic anti‐edema effect, which was not blocked by either CB1 or CB2 antagonists. Additionally, FAAH (−/−) mice displayed thermal anti‐hyperalgesic and anti‐inflammatory effects in the carrageenan model that were mediated, in part, by CB2, but not CB1 receptors. In contrast, no genotype differences in pain behavior were evident following CCI, which was instead found to obliterate the phenotypic hypoalgesia displayed by FAAH (−/−) mice in the tail immersion and hot plate tests, suggesting that nerve injury may promote adaptive changes in these animals. Collectively, these findings demonstrate a cannabinoid receptor‐mediated analgesic phenotype in FAAH (−/−) mice. In more general terms, these findings suggest that selective inhibitors of FAAH might represent a viable pharmacological approach for the clinical treatment of pain disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo

Jonathan Z. Long; Daniel K. Nomura; Robert E. Vann; D. Matthew Walentiny; Lamont Booker; Xin Jin; James J. Burston; Laura J. Sim-Selley; Aron H. Lichtman; Jenny L. Wiley; Benjamin F. Cravatt

Δ9-Tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively, has remained unclear. Here, we describe a selective and efficacious dual FAAH/MAGL inhibitor, JZL195, and show that this agent exhibits broad activity in the tetrad test for CB1 agonism, causing analgesia, hypomotilty, and catalepsy. Comparison of JZL195 to specific FAAH and MAGL inhibitors identified behavioral processes that were regulated by a single endocannabinoid pathway (e.g., hypomotility by the 2-AG/MAGL pathway) and, interestingly, those where disruption of both FAAH and MAGL produced additive effects that were reversed by a CB1 antagonist. Falling into this latter category was drug discrimination behavior, where dual FAAH/MAGL blockade, but not disruption of either FAAH or MAGL alone, produced THC-like responses that were reversed by a CB1 antagonist. These data indicate that AEA and 2-AG signaling pathways interact to regulate specific behavioral processes in vivo, including those relevant to drug abuse, thus providing a potential mechanistic basis for the distinct pharmacological profiles of direct CB1 agonists and inhibitors of individual endocannabinoid degradative enzymes.


Journal of Pharmacology and Experimental Therapeutics | 2009

Blockade of Endocannabinoid-Degrading Enzymes Attenuates Neuropathic Pain

Steven G. Kinsey; Jonathan Z. Long; Scott T. O'Neal; Rehab A. Abdullah; Justin L. Poklis; Dale L. Boger; Benjamin F. Cravatt; Aron H. Lichtman

Direct-acting cannabinoid receptor agonists are well known to reduce hyperalgesic responses and allodynia after nerve injury, although their psychoactive side effects have damped enthusiasm for their therapeutic development. Alternatively, inhibiting fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principal enzymes responsible for the degradation of the respective endogenous cannabinoids, anandamide (AEA) and 2-arachydonylglycerol (2-AG), reduce nociception in a variety of nociceptive assays, with no or minimal behavioral effects. In the present study we tested whether inhibition of these enzymes attenuates mechanical allodynia, and acetone-induced cold allodynia in mice subjected to chronic constriction injury of the sciatic nerve. Acute administration of the irreversible FAAH inhibitor, cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester (URB597), or the reversible FAAH inhibitor, 1-oxo-1-[5-(2-pyridyl)-2-yl]-7-phenylheptane (OL-135), decreased allodynia in both tests. This attenuation was completely blocked by pretreatment with either CB1 or CB2 receptor antagonists, but not by the TRPV1 receptor antagonist, capsazepine, or the opioid receptor antagonist, naltrexone. The novel MAGL inhibitor, 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) also attenuated mechanical and cold allodynia via a CB1, but not a CB2, receptor mechanism of action. Whereas URB597 did not elicit antiallodynic effects in FAAH(-/-) mice, the effects of JZL184 were FAAH-independent. Finally, URB597 increased brain and spinal cord AEA levels, whereas JZL184 increased 2-AG levels in these tissues, but no differences in either endo-cannabinoid were found between nerve-injured and control mice. These data indicate that inhibition of FAAH and MAGL reduces neuropathic pain through distinct receptor mechanisms of action and present viable targets for the development of analgesic therapeutics.


Psychopharmacology | 1996

Delta 9-tetrahydrocannabinol impairs spatial memory through a cannabinoid receptor mechanism.

Aron H. Lichtman; Billy R. Martin

The purpose of the present study was to investigate whether the cannabinoid and cholinergic systems impair working memory through a common mechanism. This hypothesis was tested by examining whether the cannabinoid antagonist SR141716A would ameliorate radial-arm performance deficits caused by either the naturally occurring cannabinoid, Δ9-THC, or scopolamine, a muscarinic antagonist. In addition, we evaluated whether the cholinesterase inhibitor, physostigmine, would prevent Δ9-THC-induced impairment of spatial memory. Finally, because the locomotor suppressive effects of cannabinoids may decrease radial arm choice accuracy independent of a direct effect on memory, we examined the impact of increasing the intertrial error on radial arm choice accuracy. As previously reported, Δ9-THC impaired maze performance (ED50=3.0 mg/kg). Increasing the intertrial interval from 5 s to 30 s resulted in a three-fold increase in the amount of time required to complete the maze without affecting choice accuracy. Importantly, SR141716A prevented Δ9-THC-induced deficits in radial-arm choice accuracy in a dose-dependent manner (AD50=2.4 mg/kg); however, the cannabinoid antagonist failed to improve the disruptive effects of scopolamine. Conversely, physostigmine failed to improve performance deficits produced by Δ9-THC. These data provide strong evidence that Δ9-THC impairs working memory through direct action at cannabinoid receptors. Moreover, these results suggest that scopolamine and Δ9-THC do not impair spatial memory in a common serial pathway, though they may converge on a third neurochemical system.


The Journal of Neuroscience | 2003

Increased seizure susceptibility and proconvulsant activity of anandamide in mice lacking fatty acid amide hydrolase.

Angela B. Clement; E. Gregory Hawkins; Aron H. Lichtman; Benjamin F. Cravatt

A number of recent in vitro studies have described a role for endogenous cannabinoids (“endocannabinoids”) as transsynaptic modulators of neuronal activity in the hippocampus and other brain regions. However, the impact that endocannabinoid signals may have on activity-dependent neural events in vivoremains mostly unknown and technically challenging to address because of the short half-life of these chemical messengers in the brain. Mice lacking the enzyme fatty acid amide hydrolase [FAAH (−/−) mice] are severely impaired in their ability to degrade the endocannabinoid anandamide and therefore represent a unique animal model in which to examine the function of this signaling lipidin vivo. Here, we show that the administration of anandamide dramatically augments the severity of chemically induced seizures in FAAH (−/−) mice but not in wild-type mice. Anandamide-enhanced seizures in FAAH (−/−) mice resulted in significant neuronal damage in the CA1 and CA3 regions of the hippocampus for the bicuculline and kainate models, respectively. Notably, in the absence of anandamide treatment, FAAH (−/−) mice exhibited enhanced seizure responses to high doses of kainate that correlated with greatly elevated endogenous levels of anandamide in the hippocampus of these animals. Collectively, these studies suggest that both exogenously administered and endogenously produced anandamide display FAAH-regulated proconvulsant activity and do not support a general neuroprotective role for this endocannabinoid in response to excitotoxic stimuli in vivo. More generally, these findings demonstrate that the disinhibitory actions of endocannabinoids observed in hippocampal slices in vitro may also occurin vivo.

Collaboration


Dive into the Aron H. Lichtman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Billy R. Martin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Laura E. Wise

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rehab A. Abdullah

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Justin L. Poklis

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Dana E. Selley

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge