Aron Roland
Technische Universität Darmstadt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aron Roland.
Journal of Physical Oceanography | 2012
Fabrice Ardhuin; Aron Roland; Franck Dumas; Anne-Claire Bennis; Alexei Sentchev; Philippe Forget; Judith Wolf; Françoise Girard; Pedro Osuna; Michel Benoit
AbstractCurrents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further refinements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the ...
Ocean Dynamics | 2014
Aron Roland; Fabrice Ardhuin
The development of numerical wave models for coastal applications, including coupling with ocean circulation models, has spurred an ongoing effort on theoretical foundations, numerical techniques, and physical parameterizations. Some important aspects of this effort are reviewed here, and results are shown in the case of the French Atlantic and Channel coast using version 4.18 of the WAVEWATCH III R model. Compared to previous results, the model errors have been strongly reduced thanks to, among other things, the introduction of currents, coastal reflection, and bottom sediment types. This last item is described here for the first time, allowing unprecedented accuracy at some sites along the French Atlantic Coast. The adequate resolution, necessary to represent strong gradients in tidal currents, was made possible by the efficiency brought by unstructured grids. A further increase in resolution, necessary to resolve surf zones and still cover vast regions,will require further developments in numerical methods.
Phys. ocean | 2012
Fabrice Ardhuin; Aron Roland; Franck Dumas; Anne-Claire Bennis; Alexei Sentchev; Philippe Forget; Judith Wolf; Françoise Girard; Pedro Osuna; Michel Benoit
AbstractCurrents effects on waves have led to many developments in numerical wave modeling over the past two decades, from numerical choices to parameterizations. The performance of numerical models in conditions with strong currents is reviewed here, and observed strong effects of opposed currents and modulations of wave heights by tidal currents in several typical situations are interpreted. For current variations on small scales, the rapid steepening of the waves enhances wave breaking. Using different parameterizations with a dissipation rate proportional to some measure of the wave steepness to the fourth power, the results are very different, none being fully satisfactory, which points to the need for more measurements and further refinements of parameterizations. For larger-scale current variations, the observed modifications of the sea state are mostly explained by refraction of waves over currents and relative wind effects, that is, the wind speed relevant for wave generation is the speed in the ...
Pure and Applied Geophysics | 2018
Mathieu Dutour Sikirić; Damir Ivanković; Aron Roland; Stjepan Ivatek-Šahdan; Martina Tudor
AbstractThe accurate modelling of sea surface gravity waves is essential for accurate oceanic forecasting with high sea waves being a major concern for navigation and coastal activities. It is also very important for oceanic modelling, with the wave input being key to the accurate modelling of oceanic surface stress, sediment resuspension, and also to oceanic current modelling. In the Croatian Meteorological Institute, we have implemented the Wind Wave Model III as an operational model. The wind forcing used is based on the numerical weather prediction model ALADIN/HR. The model uses near-surface winds dynamically adapted to 2 km grid spacing over the 3-day forecast range. The boundary condition at the Otranto Strait is obtained from the WAM model forecasts computed at ECMWF. The model setup uses an unstructured grid to make the forecasts. The numerical modellization uses an implicit scheme that we describe. We found an underestimate of significant wave height by 8 cm, an absolute error of 21 cm and a correlation of 91% on comparing with the altimeter of the SARAL satellite. Comparison with wave radar and buoys show no underestimate and smaller absolute errors.
25th International Conference on Offshore Mechanics and Arctic Engineering | 2006
Aron Roland; Ulrich Zanke; Tai-Wen Hsu; Shan-Hwei Ou; Jian-Ming Liau; Swun-Kwang Wang
This paper shows some results of the work currently carried out to improve the wave forecasting and hindcasting in oceanic and coastal regions. A new spectral wave model with a flexible numerical scheme using triangular elements to describe the model domain was developed by Hsu et al. (2002). This new spectral wave model called WWM (Wind Wave Model) is feasible for the spectral wave modeling of irregular coastlines and complicated bathymetries because of its numerical scheme. The Wave Action Equation is solved with the aid of the Fractional Step Method (Yanenko, 1971). The Integration in the spatial space is carried out with the Taylor-Galerkin Method and the terms describing depth and current induced refraction are integrated with the aid of Leonard’s (1979) TVD Ultimate Quickest scheme, which was already introduced in the WWIII (H. Tolman, 1991) for the same purpose. In three applications the wave model was verified against in-situ spectral measurements of directional and non-directional wave buoys. The results show that the new spectral wave model is capable of hindcasting the wave climate with a comparable accuracy like the SWAN model (Ris et al., 1998), though with a better efficiency since fewer nodes are necessary to resolve the model domain and the boundary conditions adequately.Copyright
Journal of Geophysical Research | 2012
Aron Roland; Yinglong J. Zhang; Harry V. Wang; Yanqiu Meng; Yi-Cheng Teng; Vladimir S. Maderich; Igor Brovchenko; Mathieu Dutour‐Sikiric; Ulrich Zanke
Journal of Geophysical Research | 2013
Guillaume Dodet; Xavier Bertin; Nicolas Bruneau; André B. Fortunato; Alphonse Nahon; Aron Roland
Journal of Marine Systems | 2009
Aron Roland; Andrea Cucco; Christian Ferrarin; Tai-Wen Hsu; Jian-Ming Liau; Shan-Hwei Ou; Georg Umgiesser; Ulrich Zanke
Journal of Geophysical Research | 2012
Fabrice Ardhuin; Aron Roland
Continental Shelf Research | 2015
Xavier Bertin; Kai Li; Aron Roland; Jean-Raymond Bidlot