Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aron Vrtala is active.

Publication


Featured researches published by Aron Vrtala.


Nature | 2011

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

J. Kirkby; Joachim Curtius; J. Almeida; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; S. Gagné; Luisa Ickes; Andreas Kürten; Agnieszka Kupc; Axel Metzger; Francesco Riccobono; L. Rondo; Siegfried Schobesberger; Georgios Tsagkogeorgas; Daniela Wimmer; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Josef Dommen; Andrew J. Downard; Mikael Ehn; S. Haider; Armin Hansel; Daniel Hauser; Werner Jud; Heikki Junninen; Fabian Kreissl

Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.


Nature | 2013

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere

Joao Almeida; Siegfried Schobesberger; Andreas Kürten; Ismael K. Ortega; Oona Kupiainen-Määttä; Arnaud P. Praplan; Alexey Adamov; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Josef Dommen; Neil M. Donahue; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; R. Guida; Jani Hakala; Armin Hansel; Martin Heinritzi; Henning Henschel; Tuija Jokinen; Heikki Junninen; Maija K. Kajos; Juha Kangasluoma; Helmi Keskinen; Agnieszka Kupc; Theo Kurtén

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Science | 2014

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

Francesco Riccobono; Siegfried Schobesberger; Catherine E. Scott; Josef Dommen; Ismael K. Ortega; Linda Rondo; J. Almeida; A. Amorim; Federico Bianchi; Martin Breitenlechner; A. David; Andrew J. Downard; Eimear M. Dunne; Jonathan Duplissy; Sebastian Ehrhart; Alessandro Franchin; Armin Hansel; Heikki Junninen; Maija K. Kajos; Helmi Keskinen; Agnieszka Kupc; Andreas Kürten; Alexander N. Kvashin; Ari Laaksonen; Katrianne Lehtipalo; Vladimir Makhmutov; Serge Mathot; Tuomo Nieminen; Antti Onnela; Tuukka Petäjä

Out of the Air New-particle formation from gaseous precursors in the atmosphere is a complex and poorly understood process with importance in atmospheric chemistry and climate. Laboratory studies have had trouble reproducing the particle formation rates that must occur in the natural world. Riccobono et al. (p. 717) used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to recreate a realistic atmospheric environment. Sulfuric acid and oxidized organic vapors in typical natural concentrations caused particle nucleation at similar rates to those observed in the lower atmosphere. Experiments in the CLOUD chamber at CERN reproduce particle nucleation rates observed in the lower atmosphere. Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.


Science | 2008

Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanoparticles

Paul M. Winkler; Gerhard Steiner; Aron Vrtala; Hanna Vehkamäki; Madis Noppel; K. E. J. Lehtinen; Georg Reischl; P. Wagner; Markku Kulmala

Generation, investigation, and manipulation of nanostructured materials are of fundamental and practical importance for several disciplines, including materials science and medicine. Recently, atmospheric new particle formation in the nanometer-size range has been found to be a global phenomenon. Still, its detailed mechanisms are mostly unknown, largely depending on the incapability to generate and measure nanoparticles in a controlled way. In our experiments, an organic vapor (n-propanol) condenses on molecular ions, as well as on charged and uncharged inorganic nanoparticles, via initial activation by heterogeneous nucleation. We found a smooth transition in activation behavior as a function of size and activation to occur well before the onset of homogeneous nucleation. Furthermore, nucleation enhancement for charged particles and a substantial negative sign preference were quantitatively detected.


Journal of Aerosol Science | 1997

Models for condensational growth and evaporation of binary aerosol particles

Timo Vesala; Markku Kulmala; Richard Rudolf; Aron Vrtala; P. Wagner

In the present paper the recent developments in condensation theories and models for binary droplet growth or evaporation are reviewed. The applicability of different theories ranging from exact models to analytical solutions is discussed. As an overall result it can be stated that for slow condensation (or evaporation) even simple linearized approaches yield satisfactory approximations. However, in the cases of rapid condensation and strong coupling of fluxes, only exact nonlinear expressions accounting for coupled mass and heat fluxes are applicable.


Journal of Geophysical Research | 2016

Effect of ions on sulfuric acid-water binary particle formation: 2. Experimental data and comparison with QC-normalized classical nucleation theory

Jonathan Duplissy; Joonas Merikanto; Alessandro Franchin; Georgios Tsagkogeorgas; Juha Kangasluoma; Daniela Wimmer; H. Vuollekoski; Siegfried Schobesberger; Katrianne Lehtipalo; David Brus; Neil M. Donahue; Hanna Vehkamäki; Joao Almeida; A. Amorim; Peter Barmet; Federico Bianchi; Martin Breitenlechner; Eimear M. Dunne; R. Guida; Henning Henschel; Heikki Junninen; J. Kirkby; Andreas Kürten; Agnieszka Kupc; Anni Määttänen; Vladimir Makhmutov; Serge Mathot; T. Nieminen; Antti Onnela; Arnaud P. Praplan

We report comprehensive, demonstrably contaminant-free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion-induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface-time of flight-mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (10^5 to 10^9  mol cm^(−3)), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm^(−3)). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC-normalized CNT), which is described in a companion paper. The formation rates predicted by the QC-normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion-induced) sulfuric acid-water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion-induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC-normalized CNT as a powerful tool to study neutral and ion-induced binary particle formation in atmospheric modeling.


Atmospheric Research | 2002

Intercomparison of number concentration measurements by various aerosol particle counters

A. Ankilov; A. Baklanov; M. Colhoun; K.-H. Enderle; J. Gras; Yu. Julanov; D. Kaller; A. Lindner; A.A. Lushnikov; R. Mavliev; F. McGovern; A. Mirme; T.C. O'Connor; J. Podzimek; O. Preining; G.P. Reischl; R. Rudolf; G.J. Sem; Wladyslaw W. Szymanski; E. Tamm; Aron Vrtala; P. Wagner; W. Winklmayr; V. Zagaynov

Abstract Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm −3 . A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the broad range of measurement instruments used. Significant deviations and nonlinear response were observed only in a few cases and are possibly related to calibration errors. For certain conditions, a dependence of aerosol counter response on particle composition has been found. The scatter of the number concentrations obtained from each individual instrument during measurements with constant test aerosol typically did not exceed 20% to 25%. At concentrations below 10 3 cm −3 , however, several of the instruments, including electrostatic particle measurement systems, tend to show increased experimental scatter.


Atmospheric Research | 2002

Particle size dependent response of aerosol counters

A. Ankilov; A. Baklanov; M. Colhoun; K.-H. Enderle; J. Gras; Yu. Julanov; D. Kaller; A. Lindner; A.A. Lushnikov; R. Mavliev; F. McGovern; T.C. O'Connor; J. Podzimek; O. Preining; G.P. Reischl; R. Rudolf; G.J. Sem; Wladyslaw W. Szymanski; Aron Vrtala; P. Wagner; W. Winklmayr; V. Zagaynov

During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions. The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the


Journal of Aerosol Science | 2001

Experimental study of sticking probabilities for condensation of nitric acid — water vapor mixtures

R. Rudolf; Aron Vrtala; Markku Kulmala; Timo Vesala; Y. Viisanen; P. Wagner

Abstract In the present study condensational droplet growth rates in the binary vapor system HNO 3 –H 2 O were measured over a relatively wide range of vapor activitiesin order to investigate the mass accommodation coefficients in binary vapor mixtures. The measurements on condensational droplet growth rates were performed in an expansion chamber with a sensitive time of the order of 10 s . Droplet growth rates and the corresponding droplet number concentrations were determined by the Constant angle mie scattering (CAMS) method. In the present study the droplet radii cover a range from 0.5 to about 4 μm . The experiments were performed at constant temperature and total pressure near atmospheric conditions. The experimental growth curves determined in the binary vapor system HNO 3 –H 2 O are compared to corresponding model calculations. Thereby the mass and thermal accommodation coefficients can be determined. It can be concluded from the experiments that in binary supersaturated vapor mixtures of HNO 3 –H 2 O the sticking probability for nitric acid molecules is between 1.0 and 0.3 for the case of the sticking probability for the water molecules is set to unity. Especially at very low relative humidities below 75% very good agreement between experiment and theory can be established when the sticking probability of water as well as of nitric acid is regarded to be unity.


Journal of Chemical Physics | 2007

Heterogeneous multicomponent nucleation theorems for the analysis of nanoclusters

Hanna Vehkamäki; Anni Määttänen; Antti Lauri; Markku Kulmala; Paul M. Winkler; Aron Vrtala; P. Wagner

In this paper we present a new form of the nucleation theorems applicable to heterogeneous nucleation. These heterogeneous nucleation theorems allow, for the first time, direct determination of properties of nanoclusters formed on pre-existing particles from measured heterogeneous nucleation probabilities. The theorems can be used to analyze the size (first theorem) and the energetics (second theorem) of heterogeneous clusters independent of any specific nucleation model. We apply the first theorem to the study of small water and n-propanol clusters formed at the surface of 8 nm silver particles. According to the experiments the size of the two-component critical clusters is found to be below 90 molecules, and only less than 20 molecules for pure water, less than 300 molecules for pure n-propanol. These values are drastically smaller than the ones predicted by the classical nucleation theory, which clearly indicates that the nucleating clusters are too small to be quantitatively described using a macroscopic theory.

Collaboration


Dive into the Aron Vrtala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Franchin

Helsinki Institute of Physics

View shared research outputs
Top Co-Authors

Avatar

Eimear M. Dunne

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge