Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arpana Sali is active.

Publication


Featured researches published by Arpana Sali.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer

Bo Wu; Hong M. Moulton; Patrick L. Iversen; Jiangang Jiang; Juan Li; Jianbin Li; Christopher F. Spurney; Arpana Sali; Alfredo D. Guerron; Kanneboyina Nagaraju; Timothy Doran; Peijuan Lu; Xiao Xiao; Qi Long Lu

Antisense oligonucleotide-mediated exon skipping is able to correct out-of-frame mutations in Duchenne muscular dystrophy and restore truncated yet functional dystrophins. However, its application is limited by low potency and inefficiency in systemic delivery, especially failure to restore dystrophin in heart. Here, we conjugate a phosphorodiamidate morpholino oligomer with a designed cell-penetrating peptide (PPMO) targeting a mutated dystrophin exon. Systemic delivery of the novel PPMO restores dystrophin to almost normal levels in the cardiac and skeletal muscles in dystrophic mdx mouse. This leads to increase in muscle strength and prevents cardiac pump failure induced by dobutamine stress in vivo. Muscle pathology and function continue to improve during the 12-week course of biweekly treatment, with significant reduction in levels of serum creatine kinase. The high degree of potency of the oligomer in targeting all muscles and the lack of detectable toxicity and immune response support the feasibility of testing the novel oligomer in treating Duchenne muscular dystrophy patients.


Muscle & Nerve | 2009

Preclinical drug trials in the mdx mouse: Assessment of reliable and sensitive outcome measures

Christopher F. Spurney; Heather Gordish-Dressman; Alfredo D. Guerron; Arpana Sali; Gouri S. Pandey; Rashmi Rawat; Jack H. Van der Meulen; Hee-Jae Cha; Emidio E. Pistilli; Terence A. Partridge; Eric P. Hoffman; Kanneboyina Nagaraju

The availability of animal models for Duchenne muscular dystrophy has led to extensive preclinical research on potential therapeutics. Few studies have focused on reliability and sensitivity of endpoints for mdx mouse drug trials. Therefore, we sought to compare a wide variety of reported and novel endpoint measures in exercised mdx and normal control mice at 10, 20, and 40 weeks of age. Statistical analysis as well as power calculations for expected effect sizes in mdx preclinical drug trials across different ages showed that body weight, normalized grip strength, horizontal activity, rest time, cardiac function measurements, blood pressure, total central/peripheral nuclei per fiber, and serum creatine kinase are the most effective measurements for detecting drug‐induced changes. These data provide an experimental basis upon which standardization of preclinical drug testing can be developed. Muscle Nerve, 2008


Embo Molecular Medicine | 2013

VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects.

Christopher R. Heier; Jesse M. Damsker; Qing Yu; Blythe C. Dillingham; Tony Huynh; Jack H. Van der Meulen; Arpana Sali; Brittany K. Miller; Aditi Phadke; Luana Scheffer; James Quinn; Kathleen Tatem; Sarah Jordan; Sherry Dadgar; Olga Rodriguez; Chris Albanese; Michael E. Calhoun; Heather Gordish-Dressman; Jyoti K. Jaiswal; Edward M. Connor; John M. McCall; Eric P. Hoffman; Erica K.M. Reeves; Kanneboyina Nagaraju

Absence of dystrophin makes skeletal muscle more susceptible to injury, resulting in breaches of the plasma membrane and chronic inflammation in Duchenne muscular dystrophy (DMD). Current management by glucocorticoids has unclear molecular benefits and harsh side effects. It is uncertain whether therapies that avoid hormonal stunting of growth and development, and/or immunosuppression, would be more or less beneficial. Here, we discover an oral drug with mechanisms that provide efficacy through anti‐inflammatory signaling and membrane‐stabilizing pathways, independent of hormonal or immunosuppressive effects. We find VBP15 protects and promotes efficient repair of skeletal muscle cells upon laser injury, in opposition to prednisolone. Potent inhibition of NF‐κB is mediated through protein interactions of the glucocorticoid receptor, however VBP15 shows significantly reduced hormonal receptor transcriptional activity. The translation of these drug mechanisms into DMD model mice improves muscle strength, live‐imaging and pathology through both preventive and post‐onset intervention regimens. These data demonstrate successful improvement of dystrophy independent of hormonal, growth, or immunosuppressive effects, indicating VBP15 merits clinical investigation for DMD and would benefit other chronic inflammatory diseases.


Journal of Cardiovascular Pharmacology and Therapeutics | 2011

Losartan decreases cardiac muscle fibrosis and improves cardiac function in dystrophin-deficient mdx mice.

Christopher F. Spurney; Arpana Sali; Alfredo D. Guerron; Micaela Iantorno; Qing Yu; Heather Gordish-Dressman; Sree Rayavarapu; Jack H. Van der Meulen; Eric P. Hoffman; Kanneboyina Nagaraju

Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice.


Molecular Therapy | 2011

One-year treatment of morpholino antisense oligomer improves skeletal and cardiac muscle functions in dystrophic mdx mice.

Bo Wu; Bin Xiao; Caryn Cloer; Mona Shaban; Arpana Sali; Peijuan Lu; Juan Li; Kanneboyina Nagaraju; Xiao Xiao; Qi Long Lu

Antisense therapy has been successful to skip targeted dystrophin exon with correction of frameshift and nonsense mutations of Duchenne muscular dystrophy (DMD). Systemic production of truncated but functional dystrophin proteins has been achieved in animal models. Furthermore, phase I/II clinical trials in United Kingdom and the Netherlands have demonstrated dystrophin induction by local and systemic administrations of antisense oligomers. However, long-term efficacy and potential toxicity remain to be determined. The present study examined 1-year systemic effect of phosphorodiamidate morpholino oligomers (PMO) treatment targeting mutated dystrophin exon 23 in mdx mice. PMO induced dystrophin expression dose-dependently and significantly improved skeletal muscle pathology and function with reduced creatine kinase (CK) levels by a regimen of 60 mg/kg biweekly administration. This regimen induced <2% dystrophin expression in the heart, but improved cardiac functions demonstrated by hemodynamics analysis. The results suggest that low levels of dystrophin induction may be able to provide detectable benefit to cardiac muscle with limited myopathy. Body weight, serum enzyme tests, and histology analysis showed no sign of toxicity in the mice treated with up to 1.5 g/kg PMO for 6 months. These results indicate that PMO could be used safely as effective drugs for long-term systemic treatment of DMD.


BMC Cardiovascular Disorders | 2011

Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

Christopher F. Spurney; Alfredo D. Guerron; Qing Yu; Arpana Sali; Jack H. Van der Meulen; Eric P. Hoffman; Kanneboyina Nagaraju

BackgroundCardiomyopathy in Duchenne muscular dystrophy (DMD) is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy.MethodsThree month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188) (460 mg/kg/dose i.p. daily). Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD) and picrosirius red staining.ResultsBL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p < 0.02) and cardiac fibrosis (p < 0.01) over 4 weeks compared to unexposed controls. P188 treatment of mdx mice significantly increased heart rate (median 593 vs. 667 bpm; p < 0.001) after 2 weeks and prevented a decrease in cardiac function in isoproterenol exposed mice (Shortening Fraction = 46 ± 6% vs. 35 ± 6%; p = 0.007) after 4 weeks. P188 treated mdx mice did not show significant differences in cardiac fibrosis, but demonstrated significantly increased EBD positive fibers.ConclusionsThis model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice.


PLOS ONE | 2012

Glucocorticoid-Treated Mice Are an Inappropriate Positive Control for Long-Term Preclinical Studies in the mdx Mouse

Arpana Sali; Alfredo D. Guerron; Heather Gordish-Dressman; Christopher F. Spurney; Micaela Iantorno; Eric P. Hoffman; Kanneboyina Nagaraju

Background Dmdmdx (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations. Methods and Findings We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment. Conclusion Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials.


PLOS ONE | 2010

Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

Alfredo D. Guerron; Rashmi Rawat; Arpana Sali; Christopher F. Spurney; Emidio E. Pistilli; Hee Jae Cha; Gouri S. Pandey; Ramkishore Gernapudi; Dwight Francia; Viken Farajian; Diana M. Escolar; Laura Bossi; Magali Becker; Patricia Zerr; Sabine de la Porte; Heather Gordish-Dressman; Terence A. Partridge; Eric P. Hoffman; Kanneboyina Nagaraju

Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.


BMC Musculoskeletal Disorders | 2012

IL-6 signaling blockade increases inflammation but does not affect muscle function in the mdx mouse

Matthew C. Kostek; Kanneboyina Nagaraju; Emidio E. Pistilli; Arpana Sali; San-Huei Lai; Brad Gordon; Yi-Wen Chen

BackgroundIL-6 is a pleiotropic cytokine that modulates inflammatory responses and plays critical roles in muscle maintenance and remodeling. In the mouse model (mdx) of Duchenne Muscular Dystrophy, IL-6 and muscle inflammation are elevated, which is believed to contribute to the chronic inflammation and failure of muscle regeneration in DMD. The purpose of the current study was to examine the effect of blocking IL-6 signaling on the muscle phenotype including muscle weakness and pathology in the mdx mouse.MethodsA monoclonal antibody against the IL-6 receptor (IL-6r mAb) that blocks local and systemic IL-6 signaling was administered to mdx and BL-10 mice for 5 weeks and muscle function, histology, and inflammation were examined.ResultsIL-6r mAb treatment increased mdx muscle inflammation including total inflammation score and ICAM-1 positive lumens in muscles. There was no significant improvement in muscle strength nor muscle pathology due to IL-6r mAb treatment in mdx mice.ConclusionsThese results showed that instead of reducing inflammation, IL-6 signaling blockade for 5 weeks caused an increase in muscle inflammation, with no significant change in indices related to muscle regeneration and muscle function. The results suggest a potential anti-inflammatory instead of the original hypothesized pro-inflammatory role of IL-6 signaling in the mdx mice.


Journal of Pharmacology and Experimental Therapeutics | 2012

Δ-9,11 Modification of Glucocorticoids Dissociates Nuclear Factor-κB Inhibitory Efficacy from Glucocorticoid Response Element-Associated Side Effects

Andreas R. Baudy; Erica K.M. Reeves; Jesse M. Damsker; Christopher R. Heier; Lindsay M. Garvin; Blythe C. Dillingham; John M. McCall; Sree Rayavarapu; Zuyi Wang; Jack Vandermeulen; Arpana Sali; Vanessa Jahnke; Stephanie Duguez; Debra C. DuBois; Mary C. Rose; Kanneboyina Nagaraju; Eric P. Hoffman

Glucocorticoids are standard of care for many inflammatory conditions, but chronic use is associated with a broad array of side effects. This has led to a search for dissociative glucocorticoids—drugs able to retain or improve efficacy associated with transrepression [nuclear factor-κB (NF-κB) inhibition] but with the loss of side effects associated with transactivation (receptor-mediated transcriptional activation through glucocorticoid response element gene promoter elements). We investigated a glucocorticoid derivative with a Δ-9,11 modification as a dissociative steroid. The Δ-9,11 analog showed potent inhibition of tumor necrosis factor-α-induced NF-κB signaling in cell reporter assays, and this transrepression activity was blocked by 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU-486), showing the requirement for the glucocorticoid receptor (GR). The Δ-9,11 analog induced the nuclear translocation of GR but showed the loss of transactivation as assayed by GR-luciferase constructs as well as mRNA profiles of treated cells. The Δ-9,11 analog was tested for efficacy and side effects in two mouse models of muscular dystrophy: mdx (dystrophin deficiency), and SJL (dysferlin deficiency). Daily oral delivery of the Δ-9,11 analog showed a reduction of muscle inflammation and improvements in multiple muscle function assays yet no reductions in body weight or spleen size, suggesting the loss of key side effects. Our data demonstrate that a Δ-9,11 analog dissociates the GR-mediated transcriptional activities from anti-inflammatory activities. Accordingly, Δ-9,11 analogs may hold promise as a source of safer therapeutic agents for chronic inflammatory disorders.

Collaboration


Dive into the Arpana Sali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric P. Hoffman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Heather Gordish-Dressman

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher F. Spurney

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack H. Van der Meulen

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qing Yu

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Vandermeulen

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sree Rayavarapu

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge