Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arseny A. Sokolov is active.

Publication


Featured researches published by Arseny A. Sokolov.


Cerebral Cortex | 2014

Structural Loop Between the Cerebellum and the Superior Temporal Sulcus: Evidence from Diffusion Tensor Imaging

Arseny A. Sokolov; Michael Erb; Wolfgang Grodd; Marina Pavlova

The cerebellum is believed to play an essential role in a variety of motor and cognitive functions through reciprocal interaction with the cerebral cortex. Recent findings suggest that cerebellar involvement in the network specialized for visual body motion processing may be mediated through interaction with the right superior temporal sulcus (STS). Yet, the underlying pattern of structural connectivity between the STS and the cerebellum remains unidentified. In the present work, diffusion tensor imaging analysis on seeds derived from functional magnetic resonance imaging during a task on point-light biological motion perception uncovers a structural pathway between the right posterior STS and the left cerebellar lobule Crus I. The findings suggest existence of a structural loop underpinning bidirectional communication between the STS and cerebellum. This connection might also be of potential value for other visual social abilities.


Perception | 2005

Perceived dynamics of static images enables emotional attribution.

Marina Pavlova; Arseny A. Sokolov; Alexander N. Sokolov

Perception of intentions and dispositions of others is an essential ingredient of adaptive daily-life social behaviour. Dynamics of moving images leads to veridical perception of social attributes. Anecdotal observations in art, science, and popular culture indicate that dynamic imbalance can be revealed in static images. Here, we ask whether perceived dynamics of abstract figures is related to emotional attribution. Participants first estimated instability of geometric shapes rotated in 15° steps in the image plane, and then rated the intensity of basic emotions that can be ascribed to the figures. We found no substantial link between the deviation of the figures from the vertical orientation and perceived instability. Irrespective of shape, a strong positive correlation was found between negative emotions and perceived instability. By contrast, positive emotions were inversely linked with deviation of the figure from vertical orientation. The work demonstrates for the first time that dynamics conveyed by static images enables specific emotional attributions, and agrees well with the assumption that neural networks for production of movements and understanding the dispositions of others are intimately linked. The findings are also of importance for exploring the ability to reveal social properties through dynamics in normal and abnormal development, for example in patients with early brain injury or autistic spectrum disorders.


Frontiers in Psychology | 2011

Gender affects body language reading.

Arseny A. Sokolov; Samuel Krüger; Paul Enck; Ingeborg Krägeloh-Mann; Marina Pavlova

Body motion is a rich source of information for social cognition. However, gender effects in body language reading are largely unknown. Here we investigated whether, and, if so, how recognition of emotional expressions revealed by body motion is gender dependent. To this end, females and males were presented with point-light displays portraying knocking at a door performed with different emotional expressions. The findings show that gender affects accuracy rather than speed of body language reading. This effect, however, is modulated by emotional content of actions: males surpass in recognition accuracy of happy actions, whereas females tend to excel in recognition of hostile angry knocking. Advantage of women in recognition accuracy of neutral actions suggests that females are better tuned to the lack of emotional content in body actions. The study provides novel insights into understanding of gender effects in body language reading, and helps to shed light on gender vulnerability to neuropsychiatric and neurodevelopmental impairments in visual social cognition.


Brain Research | 2010

Perception of intentions and actions: gender stereotype susceptibility.

Marina Pavlova; Matthias Wecker; Kerstin Krombholz; Arseny A. Sokolov

Gender differences are evident in the comprehension of social signals, but the underlying basis for these differences is unclear. There is some indication that gender effects have neurobiological sources. Here we manipulated stereotype messages about gender differences in a social cognition task, on which no gender gap has previously been documented. The outcome indicates that manipulation of stereotype messages elicits gender effects. A positive message enhances performance, whereas a negative message diminishes it. Furthermore, this effect is more pronounced in females, with a greater force of a negative stereotype message. The study provides novel insights into the possible sources of gender related fluctuations in social cognition. The findings are discussed in terms of behavioral components and brain mechanisms underpinning gender effects in social cognition.


Cortex | 2014

Recovery of biological motion perception and network plasticity after cerebellar tumor removal

Arseny A. Sokolov; Michael Erb; Wolfgang Grodd; Marcos Tatagiba; Richard S.J. Frackowiak; Marina Pavlova

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.


39th European Conference on Visual Perception (ECVP 2016) | 2016

Biological motion presented with upright and inverted display orientation: Human ultra high field 9.4 T fMRI

Marina Pavlova; Michael Erb; Gisela E. Hagberg; Arseny A. Sokolov; Klaus Scheffler

Gender differences are well established in cognition and somato-sensation, but there are almost no studies on gender differences in visual perception. One reason is that sample size is often small because effect sizes are large. Small samples are not well suited to test for gender differences. Here, we tested 887 participants from 14 to 90 years old. We tested participants in visual and vernier acuity, visual backward masking and the Wisconsin Card Sorting Test (WCST). We found no gender differences in any of the four tests for younger participants (n = 358; 14–30 years old). Even in a subgroup of schizophrenia patients (n = 260), we did not find gender differences, but large performance deficits in patients compared to controls. For middle-aged participants (n = 170; 31–59 years old), men performed significantly better than women in all perceptual tests, even when we controlled for age. We also found better performance of men compared to women in vernier duration in older participants (n = 99; 60–90 years old) and trends in the same direction for the other tests. Hence, it may be that women’s performance deteriorates with age more strongly than men’s performance. We did not find any difference in WCST, indicating no gender differences for executive functions.Although visual integration is often thought to be retinotopic, visual features can be integrated across retinotopic locations. For example, when a Vernier is followed by a sequence of flanking lines on either side, a percept of two diverging motion streams is elicited. Even though the central Vernier is invisible due to metacontrast masking, its offset is visible in the following elements. If an offset is introduced to one of the flanking lines, the two offsets combine (Otto et al., 2006). Here, by varying the number of flanking lines and the position of the flank offset, we show that this integration lasts up to 450 ms. Furthermore, this process is mandatory, i.e, observers are not able to consciously access the individual lines and change their decision. These results suggest that the contents of consciousness can be modulated by an unconscious memory-process wherein information is integrated for up to 450 ms.The ability of people with Parkinson’s (PwP) to discriminate upright and inverted facial expressions is evaluated using a temporal two-interval forced-choice paradigm. Stimuli are black and white images of neutral, happy, angry, disgusted, fearful, sad and surprised expressions. Inverted stimuli are the two expressions that participants are most and least sensitive to. A range of intensities of expressions (0–100%) are created by morphing between neutral and expressive images. The neutral image (0%) is presented in one interval and the expressive image (varies –100%) in the other. Observers indicate the interval that contained the image that was most expressive. For all upright expressions and all participants, performance increases from chance to 100% correct as intensity of expression increases. Fitted functions describing performance of happy and disgust are shifted to the left of others. This suggests that PwP are most sensitive to expressions of happiness and disgust. PwP and control participants show a small reduction in sensitivity for the expression they are most sensitive to when it is inverted (Face Inversion Effect). For PwP there is a considerable Face Inversion Effect for the expression they are least sensitive to. This suggests that configural face processing is disrupted in Parkinson’s disease.Unlike in cognition, audition and somatosensation, performance between various visual tasks does not correlate. Surprisingly, even tasks that appear similar, like visual acuity and line bisection task do not share much common variance. Similar results were found for visual illusions. For example, the Ebbinghaus and the Muller-Lyer illusions correlate very weakly. The high intra- and inter-observer variability in visual perception is possibly due to perceptual learning, i.e., individual experience shaping perception throughout one’s life time. Here, we studied the relationship between illusion strength and high-level factors such as personality traits (O-Life) and the vividness of mental imagery (VVIQ). In line with previous findings, we found only few correlations between the magnitudes of the visual illusions, despite having high test-retest reliability. More interestingly, we found a high, positive correlation between the magnitude of the Ponzo illusion and vividness of mental imagery. Moreover, the magnitude of the Ponzo illusion was negatively correlated with cognitive disorganization personality trait. These results were specific to the Ponzo-type illusions. Principal component analysis revealed one factor, with high weights mainly on the Ponzo-type illusions, cognitive disorganization and the vividness of mental imagery.Visual backward masking (VBM) is a very sensitive endophenotype of schizophrenia. Masking deficits are highly correlated with reduced EEG amplitudes. In VBM, a target stimulus is followed by a mask, which decreases performance on the target. Here, we investigated the neural correlates of VBM in relatives of schizophrenia patients. We had three conditions: target only and two VBM conditions, with long and short inter-stimulus intervals (ISI). Patients’ performance was impaired, while the relatives performed at the same level as the controls. Interestingly, EEG N1 amplitudes were higher in relatives compared to controls, while they were lower in patients relative to controls as previously reported. For relatives, N1 amplitudes were at the same level in all conditions. For controls and patients, N1 amplitudes increased with task difficult, e.g., amplitudes in the long ISI condition were lower than in short ISI condition. Our results suggest that relatives use a compensation mechanism tuning the brain to maximum performance in all conditions. Since relatives are already at the peak of their activations, increasing the task difficulty does not change brain processing.In crowding, the perception of an object deteriorates in the presence of nearby elements. Obviously, crowding is a ubiquitous phenomenon, since elements are rarely seen in isolation. Despite this ubiquity, there exists no consensus on how to model crowding. In previous experiments, it was shown that the global configuration of the entire stimulus needs to be taken into account. These findings rule out simple pooling models and favor models sensitive to global spatial aspects. In order to further investigate how to incorporate these aspects into models, we tested different types of texture segmentation models such as the Texture Tiling Model, a variation of the LAMINART neural model, a model based on Epitomes, a model based on filtering in the Fourier domain, and several classic neural network models. Across all models, simply capturing regularities in the stimulus does not suffice, as illustrated by a failure of the Fourier analysis model to explain our results. Importantly, we find that models with a grouping mechanism (such as the LAMINART model) work best. However, this grouping may be implemented in different ways, as we will show.Genetic variations of the alpha7 subunit of the nicotinergic acetylcholine receptor gene (CHRNA7) are linked to cognitive deficits in aging and schizophrenia. However, little is known about associations of the CHRNA7 gene with aged-related decline in visual perception. In the present study, we tested whether variations in the alpha7 subunit of the nicotinergic acetylcholine receptor gene (CHRNA7) interact with the perception of coherent motion in healthy aging. We assessed motion coherence for twenty-five older participants (60-73 years) and twenty-six younger participants (20–27 years) for a left/right motion direction discrimination task. A single nucleotide polymorphism (SNP) [rs2337980] of the CHRNA7 was genotyped. Overall, 25 participants were classified as T/C allele carriers (11 older), and 22 participants were classified as C/C (11 older). Only 3 participants were T/T and therefore, this group was excluded from further analysis. Overall, older adults had higher motion coherence thresholds than younger adults.We did not find any age-related associations of motion direction discrimination with the CHRNA7. However, regardless of age group, participants carrying the T/C genotype performed the task significantly better than C/C carriers. Our results therefore, indicate a strong relationship between the nicotinic system and motion perception.Reinforcement learning is a type of supervised learning, where reward is sparse and delayed. For example in chess, a series of moves is made until a sparse reward (win, loss) is issued, which makes it impossible to evaluate the value of a single move. Still, there are powerful algorithms, which can learn from delayed and sparse feedback. In order to investigate how visual reinforcement learning is determined by the structure of the RL-problem, we designed a new paradigm, in which we presented an image and asked human observers to choose an action (pushing one out of a number of buttons). The chosen action leads to the next image until observers achieve a goal image. Different learning situations are determined by the image-action matrix, which creates a so-called environment. We first tested whether humans can utilize information learned from a simple environment to solve more complex ones. Results showed no evidence supporting this hypothesis. We then tested our paradigm on several environments with different graph theoretical features, such as regular vs. irregular environments. We found that humans performed better in environments which contain less image-action pairs to the goal. We tested various RL-algorithms and found them to perform inferior to humans.The first psychotic episode is an important period for prevention of cognitive and social deterioration in schizophrenia. Cognitive deficits are of particular interest since they are evident even before a proper diagnosis can be made. Interestingly, there is a relation between cognitive deficits and social functioning. Here, we investigated the changes in cognitive and social functioning during one year and determined also the association of social functioning with cognitive impairments and psychopathological symptoms in first episode patients. 32 patients with a first psychotic episode and 32 healthy controls were investigated. Cognitive functions such as visual perception, executive functions, sustained attention, were tested with visual backward masking (VBM), the Wisconsin Card Sorting Test (WCST), and the Continuous Performance Test (CPT). Follow up tests were carried out after 6 and 12 months. Social functioning of the patients was evaluated by Health and Outcome Scale (HoNOS). Cognitive functions of patients were impaired compared to the healthy controls in all 3 tests. Performance in the cognitive tests did not change significantly during the year. Treatment compliance, however, improved social and symptom indicators.Even in the absence of neurodegenerative disease, aging strongly affects vision. Whereas optical deficits are well documented, much less is known perceptual deficits. In most perceptual studies, one paradigm is tested and it is usually found that older participants perform worse than younger participants. Implicitly, these results are taken as evidence that all visual functions of an individual decline determined by one factor, with some individuals aging more severly than others. However, this is not true. We tested 131 older participants (mean age 70 years old) and 108 younger participants (mean age 22 years old) in 14 perceptual tests (including motion perception, contrast and orientation sensitivity, biological motion perception) and in 3 cognitive tasks (WCST, verbal fluency and digit span). Young participants performed better than older participants in almost all of the tests. However, within the group of older participants, age did not predict performance, i.e., a participant could have good results in biological motion perception but poor results in orientation discrimination. It seems that there is not a single ‘‘aging’’ factor but many.39th European Conference on Visual Perception (ECVP) 2016 Barcelona LEGEND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Monday August 29th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Monday August 29th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Monday August 29th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Tuesday August 30th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Tuesday August 30th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Tuesday August 30th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Wednesday August 31th Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Wednesday August 31th Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Wednesday August 31th Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Thursday September 1st Poster presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Thursday September 1st Symposia presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 Thursday September 1st Oral presentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Author Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Perception 2016, Vol. 45(S2) 1–383 ! The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0301006616671273 pec.sagepub.comYoung adults typically display a processing advantage for the left side of space (‘‘pseudoneglect’’), whereas older adults display no strongly lateralised bias, or indeed a preference towards the right (Benwell et al., 2014; Schmitz & Peigneux, 2011). For young adults, we have recently reported that 5 commonly-used spatial attention tasks (line bisection, landmark, greyscales, gratingscales and lateralised visual detection) all provide stable intra-task measures of bias over time, however no strong inter-task correlations were found (Learmonth et al., 2015). At present there is no systematic evidence for intra- and inter-task consistency in older adults. To investigate this, we tested 22 older adults (mean age ¼ 70.44) on these five tasks, on two different days. Preliminary results show that three of the five tasks (line bisection, landmark and grayscales) seem to provide stable measures over testing sessions, indicating that they measure a consistent property of the spatial attention network. However, as per our previous finding in young adults, there seem to be no significant between-task correlations. Moreover, in contrast to the leftward biases reported in young adults, this elderly age group showed no significant lateral biases on any of the tasks.Estimates if the visual speed of human movements such as hand gestures, facial expressions and locomotion are important during social interactions because they can be used to infer mood and intention. However it is not clear how observers use retinal signals to estimate real-world movement speed. We conducted a series of experiments to investigate adaptation-induced changes in apparent human locomotion speed, to test whether the changes show repulsion of similar speeds or global re-normalisation of all apparent speeds. Participants adapted to videos of walking or running figures at various playback speeds, and then judged the apparent movement speed of subsequently presented test clips. Their task was to report whether each test clip appeared to be faster or slower than a ‘natural’ speed. After adaptation to a slow-motion or fast-forward video, psychometric functions showed that the apparent speed of all test clips changed, becoming faster or slower respectively, consistent with global re-normalisation rather than with repulsion of test speeds close to the adapting speed. The adaptation effect depended on the retinal speed of the adapting stimulus but did not require recognizably human movements.Awareness, focused attention, and task-relevance were thought to be necessary for perceptual learning (PL): a Feature of the Stimulus (FoS) on which participants perform a task is learned, while a task-irrelevant FoS is not learned. This view has been challenged by the discovery of taskirrelevant PL, occurring for subthreshold task-irrelevant stimuli presented at an unattended, peripheral location. Here, we proof further evidence for task-irrelevant PL by showing that it can occur for subthreshold task-irrelevant FoS presented in the fovea (hence spatially attended). Our experiment was divided into 3 stages: pre-test, training, and post-test. During pre- and posttests, participants performed a 3-dot Vernier task and a 3-dot bisection task. During training, participants performed an unrelated task (luminance discrimination) on the same stimulus. The task-irrelevant FoS, manipulated during training, was the position of the middle dot: either a subthreshold left/right offset (Experimental Group) or in perfect alignment with the outer dots (Control Group). The Experimental Group showed performance improvements in the Vernier task but not in the bisection task; while the Control Group showed no effect on performance in either task. We suggest that PL can occur as an effect of mere exposure to a subthreshold taskirrelevant FoS, which is spatially attended.Feature fusion reflects temporal integration. Previous studies mostly employed foveal presentations with no attention manipulation. In this study we examined the effects of sustained spatial attention on temporal integration using feature-fusion with peripheral presentation. We used a typical feature fusion display. A vernier and anti-vernier stimuli (vernier with offset in the opposite direction than the first vernier) were presented in rapid succession in one of 2 possible locations, at 2° of eccentricity. The attended condition involved endogenous attention manipulation achieved through holding the location of the stimuli constant for the whole block (i.e., the stimuli were always presented to the right of the fixation). Thus, in this condition there was no spatial uncertainty. In the unattended condition, the stimuli could appear either to the right or left of the fixation with equal probability, generating spatial uncertainty. We found considerable feature fusion in the attended condition, suggesting that feature fusion can also occur with peripheral presentation. However, no feature fusion was found without attention (i.e., when there was uncertainty regarding the stimuli location), suggesting that spatial attention improves temporal integration. We are currently conducting similar experiments using different attentional cues to manipulate transient attention.Crowding refers to the detrimental effect of nearby elements on target perception. Recently, Harrison and Bex (Curr Biol, 2015) modeled performance in a novel orientation crowding paradigm where observers reported the orientation of a Landolt C presented alone or surrounded by a flanking C. They found that crowding decreased as flanker radius increased, and their model fit these results well. A key prediction of their model is that flankers with each radius, if presented simultaneously, will additively deteriorate performance. However, evidence from other paradigms suggests that presenting several flankers can actually improve performance, if configured to group separately from the target (e.g., Manassi et al., J Vis 2012). Here, we show a similar grouping effect in the orientation crowding paradigm. We tested observers in three conditions: no flanker, one flanker, or five aligned flankers. All of our observers experienced less crowding with five aligned flankers than one flanker, and our reproduction of Harrison and Bex’s model indeed produced the opposite result. Although Harrison and Bex’s model provides a powerful framework to explain some crowding phenomena, a truly unifying model must also account for such grouping effects, as they are likely ubiquitous in everyday environments.


NeuroImage | 2012

Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus

Arseny A. Sokolov; Michael Erb; Alireza Gharabaghi; Wolfgang Grodd; Marcos Tatagiba; Marina Pavlova


Cerebral Cortex | 2010

Cerebellar Engagement in an Action Observation Network

Arseny A. Sokolov; Alireza Gharabaghi; Marcos Tatagiba; Marina Pavlova


Brain Structure & Function | 2018

Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB)

Arseny A. Sokolov; Peter Zeidman; Michael Erb; Philippe Ryvlin; Marina Pavlova; K. J. Friston


24th Annual Meeting of the Organization for Human Brain Mapping (OHBM 2018) | 2018

Uncovering temporal dynamics of the networks for body motion processing at 9.4 tesla

Marina Pavlova; Michael Erb; Gisela E. Hagberg; Arseny A. Sokolov; Andreas J. Fallgatter; Klaus Scheffler

Collaboration


Dive into the Arseny A. Sokolov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge