Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Artem A. Bakulin is active.

Publication


Featured researches published by Artem A. Bakulin.


Science | 2012

The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors

Artem A. Bakulin; Akshay Rao; Vlad G. Pavelyev; Paul H. M. van Loosdrecht; Maxim S. Pshenichnikov; Dorota Niedzialek; Jérôme Cornil; David Beljonne; Richard H. Friend

Bands That Separate In organic photovoltaic devices, the charge carriers that form at the interface between donor and acceptor layers—the electrons and holes—form bound states called excitons. Efficient current generation requires some mechanism for their separation and for the movement of free carriers to the electrodes. Bakulin et al. (p. 1340, published online 23 February) studied a process in which the excitons created with an optical pulse were also subjected to infrared pulses. In polymer-blend devices, a three-step process was observed: The boundstate excitons diffused toward the donor-acceptor interface, formed a charge-transfer state, and then dissociated into free carriers. Bound excited charge carriers achieve long-range separation by promotion to delocalized band states. The electron-hole pair created via photon absorption in organic photoconversion systems must overcome the Coulomb attraction to achieve long-range charge separation. We show that this process is facilitated through the formation of excited, delocalized band states. In our experiments on organic photovoltaic cells, these states were accessed for a short time (<1 picosecond) via infrared (IR) optical excitation of electron-hole pairs bound at the heterojunction. Atomistic modeling showed that the IR photons promote bound charge pairs to delocalized band states, similar to those formed just after singlet exciton dissociation, which indicates that such states act as the gateway for charge separation. Our results suggest that charge separation in efficient organic photoconversion systems occurs through hot-state charge delocalization rather than energy-gradient–driven intermolecular hopping.


Journal of the American Chemical Society | 2014

Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge

Brett M. Savoie; Akshay Rao; Artem A. Bakulin; Simon Gélinas; Bijan Movaghar; Richard H. Friend; Tobin J. Marks; Mark A. Ratner

Natural photosynthetic complexes accomplish the rapid conversion of photoexcitations into spatially separated electrons and holes through precise hierarchical ordering of chromophores and redox centers. In contrast, organic photovoltaic (OPV) cells are poorly ordered, utilize only two different chemical potentials, and the same materials that absorb light must also transport charge; yet, some OPV blends achieve near-perfect quantum efficiency. Here we perform electronic structure calculations on large clusters of functionalized fullerenes of different size and ordering, predicting several features of the charge generation process, outside the framework of conventional theories but clearly observed in ultrafast electro-optical experiments described herein. We show that it is the resonant coupling of photogenerated singlet excitons to a high-energy manifold of fullerene electronic states that enables efficient charge generation, bypassing localized charge-transfer states. In contrast to conventional views, our findings suggest that fullerene cluster size, concentration, and dimensionality control charge generation efficiency, independent of exciton delocalization.


Journal of the American Chemical Society | 2012

On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends

Stoichko D. Dimitrov; Artem A. Bakulin; Christian B. Nielsen; Bob C. Schroeder; Junping Du; Hugo Bronstein; Iain McCulloch; Richard H. Friend; Durrant

The energetic driving force required to drive charge separation across donor/acceptor heterojunctions is a key consideration for organic optoelectronic devices. Herein we report a series of transient absorption and photocurrent experiments as a function of excitation wavelength and temperature for two low-band-gap polymer/fullerene blends to study the mechanism of charge separation at the donor/acceptor interface. For the blend that exhibits the smallest donor/acceptor LUMO energy level offset, the photocurrent quantum yield falls as the photon excitation energy is reduced toward the band gap, but the yield of bound, interfacial charge transfer states rises. This interplay between bound and free charge generation as a function of initial exciton energy provides key evidence for the role of excess energy in driving charge separation of direct relevance to the development of low-band-gap polymers for enhanced solar light harvesting.


Nature Chemistry | 2016

Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

Artem A. Bakulin; Sarah Morgan; Tom B. Kehoe; Mark W. Wilson; Alex W. Chin; Donatas Zigmantas; Dassia Egorova; Akshay Rao

Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.


Journal of Physical Chemistry A | 2011

Hydrophobic Molecules Slow Down the Hydrogen-Bond Dynamics of Water

Artem A. Bakulin; Maxim S. Pshenichnikov; Huib J. Bakker; Christian P. Petersen

We study the spectral and orientational dynamics of HDO molecules in solutions of tertiary-butyl-alcohol (TBA), trimethyl-amine-oxide (TMAO), and tetramethylurea (TMU) in isotopically diluted water (HDO:D(2)O and HDO:H(2)O). The spectral dynamics are studied with femtosecond two-dimensional infrared spectroscopy and the orientational dynamics with femtosecond polarization-resolved vibrational pump-probe spectroscopy. We observe a strong slowing down of the spectral diffusion around the central part of the absorption line that increases with increasing solute concentration. At low concentrations, the fraction of water showing slow spectral dynamics is observed to scale with the number of methyl groups, indicating that this effect is due to slow hydrogen-bond dynamics in the hydration shell of the methyl groups of the solute molecules. The slowing down of the vibrational frequency dynamics is strongly correlated with the slowing down of the orientational mobility of the water molecules. This correlation indicates that these effects have a common origin in the effect of hydrophobic molecular groups on the hydrogen-bond dynamics of water.


Journal of Physical Chemistry Letters | 2013

Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices

Artem A. Bakulin; Stoichko D. Dimitrov; Akshay Rao; Philip C. Y. Chow; Christian B. Nielsen; Bob C. Schroeder; Iain McCulloch; Huib J. Bakker; James R. Durrant; Richard H. Friend

The formation of bound electron-hole pairs, also called charge-transfer (CT) states, in organic-based photovoltaic devices is one of the dominant loss mechanisms hindering performance. Whereas CT state dynamics following electron transfer from donor to acceptor have been widely studied, there is not much known about the dynamics of bound CT states produced by hole transfer from the acceptor to the donor. In this letter, we compare the dynamics of CT states formed in the different charge-transfer pathways in a range of model systems. We show that the nature and dynamics of the generated CT states are similar in the case of electron and hole transfer. However the yield of bound and free charges is observed to be strongly dependent on the HOMOD-HOMOA and LUMOD-LUMOA energy differences of the material system. We propose a qualitative model in which the effects of static disorder and sampling of states during the relaxation determine the probability of accessing CT states favorable for charge separation.


Nano Letters | 2015

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120

Marcus L. Böhm; Tom C. Jellicoe; Maxim Tabachnyk; Nathaniel J. L. K. Davis; Florencia Wisnivesky-Rocca-Rivarola; Caterina Ducati; Bruno Ehrler; Artem A. Bakulin; Neil C. Greenham

Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump–probe transient absorption and pump–push–photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG.


Journal of the American Chemical Society | 2016

What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends

Andreas C. Jakowetz; Marcus L. Böhm; Jiangbin Zhang; Aditya Sadhanala; Sven Huettner; Artem A. Bakulin; Akshay Rao; Richard H. Friend

In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.


Journal of Physical Chemistry B | 2008

Ultrafast Charge Photogeneration Dynamics in Ground-State Charge-Transfer Complexes Based on Conjugated Polymers

Artem A. Bakulin; D.S. Martyanov; D.Y. Paraschuk; Maxim S. Pshenichnikov; Paul H. M. van Loosdrecht

The charge photogeneration and early recombination in MEH-PPV-based charge-transfer complexes (CTCs) and in MEH-PPV/PCBM blend as a reference are studied by ultrafast visible-pump-IR-probe spectroscopy. After excitation of the CTC band, an immediate (<100 fs) electron transfer is observed from the polymer chain to the acceptor with the same yield as in the MEH-PPV/PCBM blend. The forward charge transfer in the CTCs is followed by an efficient (approximately 95%) and fast (<30 ps) geminate recombination. For comparison, the recombination efficiency obtained in the MEH-PPV/PCBM blend does not exceed a mere 50%. Polarization-sensitive experiments demonstrate high (approximately 0.3) values of transient anisotropy for the CTCs polaron band. In contrast, in the MEH-PPV/PCBM blend the dipole moment orientation of the charge-induced transition is less correlated with the polarization of the excitation photon. According to these data, photogeneration and recombination of charges in the CTCs take place locally (i.e., within a single pair of a polymer conjugation segment and an acceptor) while in the MEH-PPV/PCBM blend exciton migration precedes the separation of charges. Results of the ultrafast experiments are supported by photocurrent measurements on the corresponding MEH-PPV/acceptor photodiodes.


ACS Nano | 2013

Charge trapping dynamics in PbS colloidal quantum dot photovoltaic devices.

Artem A. Bakulin; Stefanie Neutzner; Huib J. Bakker; Laurent Ottaviani; Damien Barakel; Zhuoying Chen

The efficiency of solution-processed colloidal quantum dot (QD) based solar cells is limited by poor charge transport in the active layer of the device, which originates from multiple trapping sites provided by QD surface defects. We apply a recently developed ultrafast electro-optical technique, pump-push photocurrent spectroscopy, to elucidate the charge trapping dynamics in PbS colloidal-QD photovoltaic devices at working conditions. We show that IR photoinduced absorption of QD in the 0.2-0.5 eV region is partly associated with immobile charges, which can be optically detrapped in our experiment. Using this absorption as a probe, we observe that the early trapping dynamics strongly depend on the nature of the ligands used for QD passivation, while it depends only slightly on the nature of the electron-accepting layer. We find that weakly bound states, with a photon-activation energy of 0.2 eV, are populated instantaneously upon photoexcitation. This indicates that the photogenerated states show an intrinsically bound-state character, arguably similar to charge-transfer states formation in organic photovoltaic materials. Sequential population of deeper traps (activation energy 0.3-0.5 eV) is observed on the ~0.1-10 ns time scales, indicating that most of carrier trapping occurs only after substantial charge relaxation/transport. The reported study disentangles fundamentally different contributions to charge trapping dynamics in the nanocrystal-based optoelectronic devices and can serve as a useful tool for QD solar cell development.

Collaboration


Dive into the Artem A. Bakulin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akshay Rao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Lovrincic

Braunschweig University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge