Artem Melman
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Artem Melman.
Organic and Biomolecular Chemistry | 2004
Moshe Nahmany; Artem Melman
This review is devoted to the problem of chemoselective formation of ester functions in polyfunctional molecules. The review covers most typical approaches to chemoselective acylation of hydroxy groups in molecules containing an amino, mercapto, or another hydroxy functionality as well as chemoselective esterification of di- and polycarboxylic acids.
Organic and Biomolecular Chemistry | 2004
Rimma Shelkov; Moshe Nahmany; Artem Melman
Esterification of carboxylic acids capable of forming ketene intermediates upon treatment with carbodiimides permits the selective acylation of alcohols in the presence of phenols lacking strong electron-withdrawing groups. The selectivity of acylations involving highly acidic phenols could be reversed through the addition of catalytic amount of acid. Esterification of other carboxylic acids was found to proceed through the formation of symmetric anhydrides and provide the opposite chemoselectivity. In both cases the relative acylation rates of substituted phenols are consistent with a reaction mechanism involving an attack of phenolate anions on electrophilic intermediates such as ketenes and symmetric anhydrides, with the carbodiimides serving both as an activating reagent and as a basic catalyst.
Journal of Biological Inorganic Chemistry | 2007
Michal Shavit; Dani Peri; Artem Melman; Edit Y. Tshuva
In our attempt to define the parameters affecting anticancer activity of titanium complexes and to assess the role of hydrolytic stability, titanium compounds of oxygen-based ligands were studied. A homoleptic complex of hydroxyamino-1,3,5-triazine ligands was prepared and its hydrolysis was investigated by UV–vis spectroscopy at biologically relevant pH and temperature conditions based on its ligand to metal charge transfer absorption band. This complex exhibits very high hydrolytic stability under the conditions measured with negligible ligand dissociation. Its anticancer reactivity was investigated on ovarian OVCAR-1 and colon HT-29 cells, in comparison with the reference highly labile Ti(OiPr)4 and TiCl4(THF)2 (where THF is tetrahydrofuran), the inert thermodynamically stable TiO2, and the free aromatic hydroxyamino-1,3,5-triazine ligand. Whereas all reference titanium complexes were found to be completely unreactive against both tumor cell types, suggesting some moderate inertness is required, the homoleptic complex of the triazine ligands clearly possess some mild reactivity despite having no labile groups, and despite its incomplete solubility in the concentrations applied. As the free aromatic ligand is highly active under similar conditions, detailed time-dependence measurements were conducted and indicated that the cytotoxicity of the ligand is more affected by reducing incubation time, and that introducing the titanium complex to the medium prior to cell administration does not increase reactivity at a certain incubation time. These findings suggest that the reactivity of the complex does not result from that of the free ligand following dissociation, but rather involves the titanium center.
Dalton Transactions | 2006
Irina Ekeltchik; Jenny Gun; Ovadia Lev; Rimma Shelkov; Artem Melman
A new versatile family of chelating agents based on bis(hydroxyamino)-1,3,5-triazines, BHTs, is described. The properties of different BHT ligands are determined by electrochemistry, spectroscopy and titrimetry revealing high redox stability, transparency in the visible range, and diprotic acid-like behaviour in the 5-9 pH range. The iron(III) and iron(II)-BHT complexes were studied revealing high affinity of BHTs to iron(III). Electrochemical studies show exceptional preference of the BHT ligands to iron(III) over iron(II), this, in addition to their small size and their fast and reversible electrochemistry makes them potentially useful electrochemical redox couples for the low end of the aqueous potential window (<0.6 V, vs. NHE). The synthetic versatility of the new ligands allows easy tuning of the hydrophobicity, redox potential, and to some extent the stability constant of the complexes by alteration of the peripheral groups appended to the BHTs.
Chemical Communications | 2005
Jenny Gun; Irina Ekeltchik; Ovadia Lev; Rimma Shelkov; Artem Melman
Bis-(hydroxyamino)triazines (BHTs) constitute a new, general and highly versatile group of tridentate iron(III) chelating agents exhibiting higher affinity to iron(III) than other tridentate iron(III) chelators and superior iron(III) over iron(II) selectivity compared to desferrioxamine-B (DFO), EDTA as well as other tridentate ligands.
Journal of Organic Chemistry | 2006
Moshe Nahmany; Artem Melman
Organic Letters | 2001
Moshe Nahmany; Artem Melman
European Journal of Organic Chemistry | 2005
Rimma Shelkov; Artem Melman
Synlett | 2002
Abed Al Aziz Quntar; Artem Melman; Morris Srebnik
Tetrahedron | 2005
Moshe Nahmany; Artem Melman