Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Artem Mishchenko is active.

Publication


Featured researches published by Artem Mishchenko.


Science | 2012

Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures

Liam Britnell; R. V. Gorbachev; R. Jalil; Branson D. Belle; F. Schedin; Artem Mishchenko; Thanasis Georgiou; M. I. Katsnelson; L. Eaves; S. V. Morozov; N. M. R. Peres; J. Leist; A. K. Geim; K. S. Novoselov; L. A. Ponomarenko

Tunnel Barriers for Graphene Transistors Transistor operation for integrated circuits not only requires that the gate material has high-charge carrier mobility, but that there is also an effective way of creating a barrier to current flow so that the device can be switched off and not waste power. Graphene offers high carrier mobility, but the shape of its conduction and valence bands enables electron tunneling and makes it difficult to achieve low currents in an “off” state. Britnell et al. (p. 947, published online 2 February) have fabricated field-effect transistors in which a thin tunneling barrier created from a layered material—either hexagonal boron nitride or molybdenum disulfide—is sandwiched between graphene sheets. These devices exhibit on-off switching ratios of ≈50 and ≈10,000, respectively, at room temperature. Boron nitride or molybdenum disulfide layers sandwiched between graphene sheets act as tunneling barriers to minimize device leakage currents. An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness. Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier. They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively. Such devices have potential for high-frequency operation and large-scale integration.


Science | 2013

Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films

Liam Britnell; Rodolfo Ribeiro; Axel Eckmann; R. Jalil; Branson D. Belle; Artem Mishchenko; Yong-Jin Kim; R. V. Gorbachev; Thanasis Georgiou; S. V. Morozov; A. N. Grigorenko; A. K. Geim; Cinzia Casiraghi; A. H. Castro Neto; K. S. Novoselov

Atomic Layer Heterostructures—More Is More The isolation of stable layers of various materials, only an atom or several atoms thick, has provided the opportunity to fabricate devices with novel functionality and to probe fundamental physics. Britnell et al. (p. 1311, published online 2 May; see the Perspective by Hamm and Hess) sandwiched a single layer of the transition metal dichalcogenide WS2 between two sheets of graphene. The photocurrent response of the heterostructure device was enhanced, compared to that of the bare layer of WS2. The prospect of combining single or several-atom-thick layers into heterostructures should help to develop materials with a wide range of properties. Transition metal dichalcogenides sandwiched between two layers of graphene produce an enhanced photoresponse. [Also see Perspective by Hamm and Hess] The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).


Science | 2016

2D materials and van der Waals heterostructures

K. S. Novoselov; Artem Mishchenko; A. Carvalho; A. H. Castro Neto

BACKGROUND Materials by design is an appealing idea that is very hard to realize in practice. Combining the best of different ingredients in one ultimate material is a task for which we currently have no general solution. However, we do have some successful examples to draw upon: Composite materials and III-V heterostructures have revolutionized many aspects of our lives. Still, we need a general strategy to solve the problem of mixing and matching crystals with different properties, creating combinations with predetermined attributes and functionalities. ADVANCES Two-dimensional (2D) materials offer a platform that allows creation of heterostructures with a variety of properties. One-atom-thick crystals now comprise a large family of these materials, collectively covering a very broad range of properties. The first material to be included was graphene, a zero-overlap semimetal. The family of 2D crystals has grown to includes metals (e.g., NbSe2), semiconductors (e.g., MoS2), and insulators [e.g., hexagonal boron nitride (hBN)]. Many of these materials are stable at ambient conditions, and we have come up with strategies for handling those that are not. Surprisingly, the properties of such 2D materials are often very different from those of their 3D counterparts. Furthermore, even the study of familiar phenomena (like superconductivity or ferromagnetism) in the 2D case, where there is no long-range order, raises many thought-provoking questions. A plethora of opportunities appear when we start to combine several 2D crystals in one vertical stack. Held together by van der Waals forces (the same forces that hold layered materials together), such heterostructures allow a far greater number of combinations than any traditional growth method. As the family of 2D crystals is expanding day by day, so too is the complexity of the heterostructures that could be created with atomic precision. When stacking different crystals together, the synergetic effects become very important. In the first-order approximation, charge redistribution might occur between the neighboring (and even more distant) crystals in the stack. Neighboring crystals can also induce structural changes in each other. Furthermore, such changes can be controlled by adjusting the relative orientation between the individual elements. Such heterostructures have already led to the observation of numerous exciting physical phenomena. Thus, spectrum reconstruction in graphene interacting with hBN allowed several groups to study the Hofstadter butterfly effect and topological currents in such a system. The possibility of positioning crystals in very close (but controlled) proximity to one another allows for the study of tunneling and drag effects. The use of semiconducting monolayers leads to the creation of optically active heterostructures. The extended range of functionalities of such heterostructures yields a range of possible applications. Now the highest-mobility graphene transistors are achieved by encapsulating graphene with hBN. Photovoltaic and light-emitting devices have been demonstrated by combining optically active semiconducting layers and graphene as transparent electrodes. OUTLOOK Currently, most 2D heterostructures are composed by direct stacking of individual monolayer flakes of different materials. Although this method allows ultimate flexibility, it is slow and cumbersome. Thus, techniques involving transfer of large-area crystals grown by chemical vapor deposition (CVD), direct growth of heterostructures by CVD or physical epitaxy, or one-step growth in solution are being developed. Currently, we are at the same level as we were with graphene 10 years ago: plenty of interesting science and unclear prospects for mass production. Given the fast progress of graphene technology over the past few years, we can expect similar advances in the production of the heterostructures, making the science and applications more achievable. Production of van der Waals heterostructures. Owing to a large number of 2D crystals available today, many functional van der Waals heterostructures can be created. What started with mechanically assembled stacks (top) has now evolved to large-scale growth by CVD or physical epitaxy (bottom). The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices—such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes—are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.


Nature Materials | 2015

Light-emitting diodes by band-structure engineering in van der Waals heterostructures

Freddie Withers; O. Del Pozo-Zamudio; Artem Mishchenko; Aidan P. Rooney; Ali Gholinia; Kenji Watanabe; T. Taniguchi; Sarah J. Haigh; A. K. Geim; A. I. Tartakovskii; K. S. Novoselov

The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.


Nature | 2013

Cloning of Dirac fermions in graphene superlattices

L. A. Ponomarenko; R. V. Gorbachev; Geliang Yu; D. C. Elias; R. Jalil; Aavishkar A. Patel; Artem Mishchenko; Alexander S. Mayorov; Colin R. Woods; John R. Wallbank; Marcin Mucha-Kruczynski; B. A. Piot; M. Potemski; I. V. Grigorieva; K. S. Novoselov; F. Guinea; V. I. Fal’ko; A. K. Geim

Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties. In previous studies (see, for example, refs 1, 2, 3, 4, 5, 6, 7, 8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice. Evidence for the formation of superlattice minibands (forming a fractal spectrum known as Hofstadter’s butterfly) has been limited to the observation of new low-field oscillations and an internal structure within Landau levels. Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate’s moiré potential acts as a superlattice and leads to profound changes in the graphene’s electronic spectrum. Second-generation Dirac points appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene’s conduction and valence bands. Strong magnetic fields lead to Zak-type cloning of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures.


Nature Communications | 2013

Resonant tunnelling and negative differential conductance in graphene transistors.

L. Britnell; R. V. Gorbachev; A. K. Geim; L. A. Ponomarenko; Artem Mishchenko; M.T. Greenaway; T. M. Fromhold; K. S. Novoselov; L. Eaves

The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.


Science | 2014

Detecting topological currents in graphene superlattices.

R. V. Gorbachev; Justin C. W. Song; Geliang Yu; Andrey V. Kretinin; Freddie Withers; Yang Cao; Artem Mishchenko; I. V. Grigorieva; K. S. Novoselov; L. S. Levitov; A. K. Geim

Making use of graphenes valleys Graphene has two distinct valleys in its electronic structure, in which the electrons have the same energy. Theorists have predicted that creating an asymmetry between the two valleys will coax graphene into exhibiting the so-called valley Hall effect (VHE). In this effect, electrons from the two valleys move across the sample in opposite directions when the experimenters run current along the sample. Gorbachev et al. achieved this asymmetry by aligning graphene with an underlying layer of hexagonalboron nitride (hBN) (see the Perspective by Lundeberg and Folk). The authors measured the transport characteristics of the sample, which were consistent with the theoretical predictions for the VHE. The method may in the future lead to information processing using graphenes valleys. Science, this issue p. 448; see also p. 422 Graphene is aligned with a layer of hexagonal boron nitride to achieve the valley Hall effect. [Also see Perspective by Lundeberg and Folk] Topological materials may exhibit Hall-like currents flowing transversely to the applied electric field even in the absence of a magnetic field. In graphene superlattices, which have broken inversion symmetry, topological currents originating from graphene’s two valleys are predicted to flow in opposite directions and combine to produce long-range charge neutral flow. We observed this effect as a nonlocal voltage at zero magnetic field in a narrow energy range near Dirac points at distances as large as several micrometers away from the nominal current path. Locally, topological currents are comparable in strength with the applied current, indicating large valley-Hall angles. The long-range character of topological currents and their transistor-like control by means of gate voltage can be exploited for information processing based on valley degrees of freedom.


Nature Nanotechnology | 2014

Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

Artem Mishchenko; J. S. Tu; Yang Cao; R. V. Gorbachev; John R. Wallbank; M.T. Greenaway; V E Morozov; S. V. Morozov; Mengjian Zhu; Swee Liang Wong; Freddie Withers; Colin R. Woods; Y-J Kim; Kenji Watanabe; Takashi Taniguchi; E. E. Vdovin; O. Makarovsky; T. M. Fromhold; Vladimir I. Fal'ko; A. K. Geim; L. Eaves; K. S. Novoselov

Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.


Nature Nanotechnology | 2017

High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe

Denis A. Bandurin; Anastasia V. Tyurnina; Geliang L. Yu; Artem Mishchenko; Viktor Zólyomi; S. V. Morozov; Roshan Krishna Kumar; R. V. Gorbachev; Zakhar R. Kudrynskyi; Sergio Pezzini; Z. D. Kovalyuk; U. Zeitler; K. S. Novoselov; A. Patanè; L. Eaves; I. V. Grigorieva; Vladimir I. Fal'ko; A. K. Geim; Yang Cao

A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 103 cm2 V-1 s-1 and 104 cm2 V-1 s-1 at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayers mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.


Nano Letters | 2014

Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals

Andrey V. Kretinin; Yang Cao; J. S. Tu; Geliang Yu; R. Jalil; K. S. Novoselov; Sarah J. Haigh; Ali Gholinia; Artem Mishchenko; M. Lozada; Thanasis Georgiou; Colin R. Woods; Freddie Withers; P. Blake; Goki Eda; A. Wirsig; C. Hucho; Kenji Watanabe; T. Taniguchi; A. K. Geim; R. V. Gorbachev

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are found to exhibit consistently high carrier mobilities of about 60 000 cm(2) V(-1) s(-1). In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide, and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ∼1000 cm(2) V(-1) s(-1). We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN, and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.

Collaboration


Dive into the Artem Mishchenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Geim

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Watanabe

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Eaves

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin R. Woods

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Geliang Yu

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge