Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur Charguéraud is active.

Publication


Featured researches published by Arthur Charguéraud.


symposium on principles of programming languages | 2008

Engineering formal metatheory

Brian E. Aydemir; Arthur Charguéraud; Benjamin C. Pierce; Randy Pollack; Stephanie Weirich

Machine-checked proofs of properties of programming languages have become acritical need, both for increased confidence in large and complex designsand as a foundation for technologies such as proof-carrying code. However, constructing these proofs remains a black art, involving many choices in the formulation of definitions and theorems that make a huge cumulative difference in the difficulty of carrying out large formal developments. There presentation and manipulation of terms with variable binding is a key issue. We propose a novel style for formalizing metatheory, combining locally nameless representation of terms and cofinite quantification of free variable names in inductivedefinitions of relations on terms (typing, reduction, ...). The key technical insight is that our use of cofinite quantification obviates the need for reasoning about equivariance (the fact that free names can be renamed in derivations); in particular, the structural induction principles of relations defined using cofinite quantification are strong enough for metatheoretic reasoning, and need not be explicitly strengthened. Strong inversion principles follow (automatically, in Coq) from the induction principles. Although many of the underlying ingredients of our technique have been used before, their combination here yields a significant improvement over other methodologies using first-order representations, leading to developments that are faithful to informal practice, yet require noexternal tool support and little infrastructure within the proof assistant. We have carried out several large developments in this style using the Coq proof assistant and have made them publicly available. Our developments include type soundness for System F sub; and core ML (with references, exceptions, datatypes, recursion, and patterns) and subject reduction for the Calculus of Constructions. Not only do these developments demonstrate the comprehensiveness of our approach; they have also been optimized for clarity and robustness, making them good templates for future extension.


acm sigplan symposium on principles and practice of parallel programming | 2013

Scheduling parallel programs by work stealing with private deques

Umut A. Acar; Arthur Charguéraud; Mike Rainey

Work stealing has proven to be an effective method for scheduling parallel programs on multicore computers. To achieve high performance, work stealing distributes tasks between concurrent queues, called deques, which are assigned to each processor. Each processor operates on its deque locally except when performing load balancing via steals. Unfortunately, concurrent deques suffer from two limitations: 1) local deque operations require expensive memory fences in modern weak-memory architectures, 2) they can be very difficult to extend to support various optimizations and flexible forms of task distribution strategies needed many applications, e.g., those that do not fit nicely into the divide-and-conquer, nested data parallel paradigm. For these reasons, there has been a lot recent interest in implementations of work stealing with non-concurrent deques, where deques remain entirely private to each processor and load balancing is performed via message passing. Private deques eliminate the need for memory fences from local operations and enable the design and implementation of efficient techniques for reducing task-creation overheads and improving task distribution. These advantages, however, come at the cost of communication. It is not known whether work stealing with private deques enjoys the theoretical guarantees of concurrent deques and whether they can be effective in practice. In this paper, we propose two work-stealing algorithms with private deques and prove that the algorithms guarantee similar theoretical bounds as work stealing with concurrent deques. For the analysis, we use a probabilistic model and consider a new parameter, the branching depth of the computation. We present an implementation of the algorithm as a C++ library and show that it compares well to Cilk on a range of benchmarks. Since our approach relies on private deques, it enables implementing flexible task creation and distribution strategies. As a specific example, we show how to implement task coalescing and steal-half strategies, which can be important in fine-grain, non-divide-and-conquer algorithms such as graph algorithms, and apply them to the depth-first-search problem.


international conference on functional programming | 2008

Functional translation of a calculus of capabilities

Arthur Charguéraud; François Pottier

Reasoning about imperative programs requires the ability to track aliasing and ownership properties. We present a type system that provides this ability, by using regions, capabilities, and singleton types. It is designed for a high-level calculus with higher-order functions, algebraic data structures, and references (mutable memory cells). The type system has polymorphism, yet does not require a value restriction, because capabilities act as explicit store typings. We exhibit a type-directed, type-preserving, and meaning-preserving translation of this imperative calculus into a pure calculus. Like the monadic translation, this is a store-passing translation. Here, however, the store is partitioned into multiple fragments, which are threaded through a computation only if they are relevant to it. Furthermore, the decomposition of the store into fragments can evolve dynamically to reflect ownership transfers. The translation offers deep insight about the inner workings and soundness of the type system. If coupled with a semantic model of its target calculus, it leads to a semantic model of its imperative source calculus. Furthermore, it provides a foundation for our long-term objective of designing a system for specifying and certifying imperative programs with dynamic memory allocation.


international conference on functional programming | 2010

Program verification through characteristic formulae

Arthur Charguéraud

This paper describes CFML, the first program verification tool based on characteristic formulae. Given the source code of a pure Caml program, this tool generates a logical formula that implies any valid post-condition for that program. One can then prove that the program satisfies a given specification by reasoning interactively about the characteristic formula using a proof assistant such as Coq. Our characteristic formulae improve over Honda et als total characteristic assertion pairs in that they are expressible in standard higher-order logic, allowing to exploit them in practice to verify programs using existing proof assistants. Our technique has been applied to formally verify more than half of the content of Okasakis Purely Functional Data Structures reference book


interactive theorem proving | 2010

The optimal fixed point combinator

Arthur Charguéraud

In this paper, we develop a general theory of fixed point combinators, in higher-order logic equipped with Hilberts epsilon operator. This combinator allows for a direct and effective formalization of corecursive values, recursive and corecursive functions, as well as functions mixing recursion and corecursion. It supports higher-order recursion, nested recursion, and offers a proper treatment of partial functions in the sense that domains need not be hardwired in the definition of functionals. Our work, which has been entirely implemented in Coq, unifies and generalizes existing results on contraction conditions and complete ordered families of equivalences, and relies on the theory of optimal fixed points for the treatment of partial functions. It provides a practical way to formalize circular definitions in higher-order logic.


certified programs and proofs | 2016

Higher-order representation predicates in separation logic

Arthur Charguéraud

In Separation Logic, representation predicates are used to describe mutable data structures, by establishing a relationship between the entry point of the structure, the piece of heap over which this structure spans, and the logical model associated with the structure. When a data structure is polymorphic, such as in the case of a container, its representation predicate needs to be parameterized not just by the type of the items stored in the structure, but also by the representation predicates associated with these items. Such higher-order representation predicates can be used in particular to control whether containers should own their items. In this paper, we present, through a collection of practical examples, solutions to the challenges associated with reasoning about accesses into data structures that own their elements.


international conference on functional programming | 2016

Dag-calculus: a calculus for parallel computation

Umut A. Acar; Arthur Charguéraud; Mike Rainey; Filip Sieczkowski

Increasing availability of multicore systems has led to greater focus on the design and implementation of languages for writing parallel programs. Such languages support various abstractions for parallelism, such as fork-join, async-finish, futures. While they may seem similar, these abstractions lead to different semantics, language design and implementation decisions, and can significantly impact the performance of end-user applications. In this paper, we consider the question of whether it would be possible to unify various paradigms of parallel computing. To this end, we propose a calculus, called dag calculus, that can encode fork-join, async-finish, and futures, and possibly others. We describe dag calculus and its semantics, establish translations from the aforementioned paradigms into dag calculus. These translations establish that dag calculus is sufficiently powerful for encoding programs written in prevailing paradigms of parallelism. We present concurrent algorithms and data structures for realizing dag calculus on multicore hardware and prove that the proposed techniques are consistent with the semantics. Finally, we present an implementation of the calculus and evaluate it empirically by comparing its performance to highly optimized code from prior work. The results show that the calculus is expressive and that it competes well with, and sometimes outperforms, the state of the art.


ML/OCaml | 2014

Improving Type Error Messages in OCaml

Arthur Charguéraud

Cryptic type error messages are a major obstacle to learning OCaml or other ML-based languages. In many cases, error messages cannot be interpreted without a sufficiently-precise model of the type inference algorithm. The problem of improving type error messages in ML has received quite a bit of attention over the past two decades, and many different strategies have been considered. The challenge is not only to produce error messages that are both sufficiently concise and systematically useful to the programmer, but also to handle a full-blown programming language and to cope with large-sized programs efficiently. In this work, we present a modification to the traditional ML type inference algorithm implemented in OCaml that, by significantly reducing the left-to-right bias, allows us to report error messages that are more helpful to the programmer. Our algorithm remains fully predictable and continues to produce fairly concise error messages that always help making some progress towards fixing the code. We implemented our approach as a patch to the OCaml compiler in just a few hundred lines of code. We believe that this patch should benefit not just to beginners, but also to experienced programs developing large-scale OCaml programs.


Journal of Functional Programming | 2016

Oracle-Guided Scheduling for Controlling Granularity in Implicitly Parallel Languages

Umut A. Acar; Arthur Charguéraud; Mike Rainey


Archive | 2015

Fast Parallel Graph-Search with Splittable and Catenable Frontiers

Umut A. Acar; Arthur Charguéraud; Mike Rainey

Collaboration


Dive into the Arthur Charguéraud's collaboration.

Top Co-Authors

Avatar

Umut A. Acar

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian E. Aydemir

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan K. Muller

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Stephanie Weirich

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge