Arthur D. Tinoco
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arthur D. Tinoco.
Journal of the American Chemical Society | 2010
Arthur D. Tinoco; Debarati M. Tagore; Alan Saghatelian
In recent years, the biological sciences have seen a surge in the development of methods, including high-throughput global methods, for the quantitative measurement of biomolecule levels (i.e., RNA, proteins, metabolites) from cells and tissues. Just as important as quantitation of biomolecules has been the creation of approaches that uncover the regulatory and signaling connections between biomolecules. Our specific interest is in understanding peptide metabolism in a physiological setting, and this has led us to develop a multidisciplinary approach that integrates genetics, analytical chemistry, synthetic chemistry, biochemistry, and chemical biology to identify the substrates of peptidases in vivo. To accomplish this we utilize a liquid chromatography-mass spectrometry (LC-MS)-based peptidomics platform to measure changes in the peptidome as a function of peptidase activity. Previous analysis of mice lacking the enzyme dipeptidyl peptidase 4 (DPP4(-/-) mice), a biomedically relevant peptidase, using this approach identified a handful of novel endogenous DPP4 substrates. Here, we utilize these substrates and tissues from DPP4(-/-) mice to improve the coverage of the peptidomics platform by optimizing the key steps in the workflow, and in doing so, discover over 70 renal DPP4 substrates (up from 7 at the beginning of our optimization), a 10-fold improvement in our coverage. The sequences of these DPP4 peptide substrates support a broad role for DPP4 in proline-containing peptide catabolism and strengthen a biochemical model that interlinks aminopeptidase and DPP4 activities. Moreover, the improved peptidome coverage also led to the detection of greater numbers of known bioactive peptides (e.g., peptide hormones) during the analysis of gut samples, suggesting additional uses for this optimized workflow. Together these results strengthen our ability to identify endogenous peptide substrates through improved peptidome coverage and demonstrate a broader potential of this peptidomics platform.
Inorganic Chemistry | 2008
Arthur D. Tinoco; Emily V. Eames; Christopher D. Incarvito; Ann M. Valentine
Serum albumin, the most abundant protein in human plasma (700 microM), binds diverse ligands at multiple sites. While studies have shown that serum albumin binds hard metals in chelate form, few have explored the trafficking of these metals by this protein. Recent work demonstrated that serum albumin may play a pivotal role in the transport and bioactivity of titanium(IV) complexes, including the anticancer drug candidate titanocene dichloride. The current work explores this interaction further by using a stable Ti(IV) complex that presents a hydrophobic surface to the protein. Ti(IV) chelation by 2,3-dihydroxynaphthalene (H2L1) and 2,3-dihydroxynaphthalene-6-sulfonate (H2L2) affords water soluble complexes that protect Ti(IV) from hydrolysis at pH 7.4 and bind to bovine serum albumin (BSA). The solution and solid Ti(IV) coordination chemistry were explored by aqueous spectropotentiometric titrations and X-ray crystallography, respectively, and with complementary electrochemistry, mass spectrometry, and IR and NMR spectroscopies. Four Ti(IV) species of L2, TiLH0, TiL2H0, TiL3H0, and TiL3H(-1), adequately represent the pH-dependent speciation. The isolation of Ti(C10H6O2)2 x 1.75 H2O at pH approximately 3 and K2[Ti(C10H6O2)3] x 3 H2O and Cs5[Ti(C10H5O5S)3] x 2.5 H2O at pH approximately 7 correlates well with the solution studies. At pH 7.4 and micromolar concentrations, the TiL3H0 species are favored. The Ti(naphthalene-2,3-diolate)3(2-) complex binds with moderate affinity to multiple sites of BSA. The primary site (K = 2.05 +/- 0.34 x 10(6) M(-1)) appears to be hydrophobic as indicated by competition studies with different ligands and a hydrophilic Ti(IV) complex. The Ti(naphthalene-2,3-diolate)3(2-) interaction with the Fe(III)-binding protein human serum transferrin (HsTf), a protein also important for Ti(IV) transport, and DNA was examined. The complex does not deliver Ti(IV) to HsTf and while it does bind to DNA, no cleavage promotion activity is observed. This investigation provides insight into the use of ligands to direct metal binding at different sites of albumin, which may facilitate transport to distinct targets.
Biochemistry | 2011
Arthur D. Tinoco; Alan Saghatelian
Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters, and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been a successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome--all the peptides in a cell, tissue, or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography--tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation.
Aaps Journal | 2010
Anna Mari Lone; Whitney M. Nolte; Arthur D. Tinoco; Alan Saghatelian
The prolyl peptidases are a family of enzymes characterized by a biochemical preference for cleaving proline-containing peptides. The members of this enzyme family include prolyl endopeptidase, prolyl endopeptidase-like, dipeptidyl peptidase 4 (DPP4), DPP7, DPP8, DPP9, and fibroblast activation protein. DPP4 is the best studied member of the family, due to its role in physiological glucose tolerance, exerted through the regulation of the insulinotropic peptide glucagon-like peptide-1. While other members of the prolyl peptidase family have also been implicated in various (patho)physiological processes, the underlying peptides and pathways regulated by these enzymes are less clear. The identification of endogenous substrates of the prolyl peptidases is an important step in elucidating the molecular mechanisms of these enzymes. Here, we highlight the utility of liquid chromatography–mass spectrometry-based peptidomics to enable the discovery of endogenous prolyl peptidase substrates directly from tissues, and demonstrate the utility of this information in understanding the biochemical and physiological functions of the prolyl peptidases.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Arthur D. Tinoco; Horatio R. Thomas; Christopher D. Incarvito; Alan Saghatelian; Ann M. Valentine
Titanium(IV) compounds are excellent anticancer drug candidates, but they have yet to find success in clinical applications. A major limitation in developing further compounds has been a general lack of understanding of the mechanism governing their bioactivity. To determine factors necessary for bioactivity, we tested the cytotoxicity of different ligand compounds in conjunction with speciation studies and mass spectrometry bioavailability measurements. These studies demonstrated that the Ti(IV) compound of N,N′-di(o-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid (HBED) is cytotoxic to A549 lung cancer cells, unlike those of citrate and naphthalene-2,3-diolate. Although serum proteins are implicated in the activity of Ti(IV) compounds, we found that these interactions do not play a role in [TiO(HBED)]− activity. Subsequent compound characterization revealed ligand properties necessary for activity. These findings establish the importance of the ligand in the bioactivity of Ti(IV) compounds, provides insights for developing next-generation Ti(IV) anticancer compounds, and reveal [TiO(HBED)]− as a unique candidate anticancer compound.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Arthur D. Tinoco; Cynthia W. Peterson; Baldo Lucchese; Robert P. Doyle; Ann M. Valentine
Transferrins are a family of proteins that bind and transport Fe(III). Modern transferrins are typically bilobal and are believed to have evolved from an ancient gene duplication of a monolobal form. A novel monolobal transferrin, nicatransferrin (nicaTf), was identified in the primitive ascidian species Ciona intestinalis that possesses the characteristic features of the proposed ancestral Tf protein. In this work, nicaTf was expressed in Pichia pastoris. Extensive solution studies were performed on nicaTf, including UV-vis, fluorescence, CD, EPR and NMR spectroscopies, and electrospray time-of-flight mass spectrometry. The expressed protein is nonglycosylated, unlike the protein isolated from the organism. This property does not affect its ability to bind Fe(III). However, Fe(III)-bound nicaTf displays important spectral differences from other Fe(III)-bound transferrins, which are likely the consequence of differences in metal coordination. Coordination differences could also account for the weaker affinity of nicaTf for Fe(III) (log K = 18.5) compared with bilobal human serum transferrin (HsTf) (log K = 22.5 and 21.4). The Fe–nicaTf complex is not labile, as indicated by slow metal removal kinetics by the high-affinity chelator tiron at pH 7.4. The protein alternatively binds up to one equivalent of Ti(IV) or V(V), which suggests that it may transport nonferric metals. These solution studies provide insight into the structure and function of the primitive monolobal transferrin of C. intestinalis for comparison with higher order bilobal transferrins. They suggest that a major advantage for the evolution of modern transferrins, dominantly of bilobal form, is stronger Fe(III) affinity because of cooperativity.
Journal of Inorganic Biochemistry | 2010
Claire J. Parker Siburt; Emily M. Lin; Sara J. Brandt; Arthur D. Tinoco; Ann M. Valentine; Alvin L. Crumbliss
Transferrin, the human iron transport protein, binds Ti(IV) even more tightly than it binds Fe(III). However, the fate of titanium bound to transferrin is not well understood. Here we present results which address the fate of titanium once bound to transferrin. We have determined the redox potentials for a series of Ti(IV) complexes and have used these data to develop a linear free energy relationship (LFER) correlating Ti(IV) <==> Ti(III) redox processes with Fe(III) <==> Fe(II) redox processes. This LFER enables us to compare the redox potentials of Fe(III) complexes and Ti(IV) complexes that mimic the active site of transferrin and allows us to predict the redox potential of titanium-transferrin. Using cyclic voltammetry and discontinuous metalloprotein spectroelectrochemistry (dSEC) in conjunction with the LFER, we report that the redox potential of titanium-transferrin is lower than -600 mV (lower than that of iron-transferrin) and is predicted to be ca. -900 mV vs. NHE (normal hydrogen electrode). We conclude that Ti(IV)/Ti(III) reduction in titanium-transferrin is not accessible by biological reducing agents. This observation is discussed in the context of current hypotheses concerning the role of reduction in transferrin mediated iron transport.
Journal of the American Chemical Society | 2016
Arthur D. Tinoco; Manoj Saxena; Shweta Sharma; Nicholas Noinaj; Yamixa Delgado; Ernesto P. Quiñones González; Steven E. Conklin; Nicole Zambrana; Sergio A. Loza-Rosas; Timothy B. Parks
Human serum transferrin (sTf) is a protein that mediates the transport of iron from blood to cells. Assisted by the synergistic anion carbonate, sTf transports Fe(III) by binding the metal ion in a closed conformation. Previous studies suggest sTfs role as a potential transporter of other metals such as titanium. Ti is a widely used metal in colorants, foods, and implants. A substantial amount of Ti is leached into blood from these implants. However, the fate of the leached Ti and its transport into the cells is not known. Understanding Ti interaction with sTf assumes a greater significance with our ever increasing exposure to Ti in the form of implants. On the basis of in vitro studies, it was speculated that transferrin can bind Ti(IV) assisted by a synergistic anion. However, the role and identity of the synergistic anion(s) and the conformational state in which sTf binds Ti(IV) are not known. Here we have solved the first X-ray crystal structure of a Ti(IV)-bound sTf. We find that sTf binds Ti(IV) in an open conformation with both carbonate and citrate as synergistic anions at the metal binding sites, an unprecedented role for citrate. Studies with cell lines suggest that Ti(IV)-sTf is transported into cells and that sTf and citrate regulate the metals blood speciation and attenuate its cytotoxic property. Our results provide the first glimpse into the citrate-transferrin synergism in the regulation of Ti(IV) bioactivity and offers insight into the future design of Ti(IV)-based anticancer drugs.
Biochemistry | 2011
Arthur D. Tinoco; Yun-Gon Kim; Debarati M. Tagore; Jessica Wiwczar; William S. Lane; Nika N. Danial; Alan Saghatelian
Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS) based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay, a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e., GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones.
Molecular Pharmaceutics | 2016
Moraima Morales-Cruz; Alejandra Cruz-Montañez; Cindy M. Figueroa; Tania González-Robles; Josue Davila; Mikhail Inyushin; Sergio A. Loza-Rosas; Anna M. Molina; Laura Muñoz-Perez; Lilia Kucheryavykh; Arthur D. Tinoco; Kai Griebenow
Proteins often possess highly specific biological activities that make them potential therapeutics, but their physical and chemical instabilities during formulation, storage, and delivery have limited their medical use. Therefore, engineering of nanosized vehicles to stabilize protein therapeutics and to allow for targeted treatment of complex diseases, such as cancer, is of considerable interest. A micelle-like nanoparticle (NP) was designed for both, tumor targeting and stimulus-triggered release of the apoptotic protein cytochrome c (Cyt c). This system is composed of a Cyt c NP stabilized by a folate-receptor targeting amphiphilic copolymer (FA-PEG-PLGA) attached to Cyt c through a redox-sensitive bond. FA-PEG-PLGA-S-S-Cyt c NPs exhibited excellent stability under extracellular physiological conditions, whereas once in the intracellular reducing environment, Cyt c was released from the conjugate. Under the same conditions, the folate-decorated NP reduced folate receptor positive HeLa cell viability to 20%, while the same complex without FA only reduced it to 80%. Confocal microscopy showed that the FA-PEG-PLGA-S-S-Cyt c NPs were internalized by HeLa cells and were capable of endosomal escape. The specificity of the folate receptor-mediated internalization was confirmed by the lack of uptake by two folate receptor deficient cell lines: A549 and NIH-3T3. Finally, the potential as antitumor therapy of our folate-decorated Cyt c-based NPs was confirmed with an in vivo brain tumor model. In conclusion, we were able to create a stable, selective, and smart nanosized Cyt c delivery system.