Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur H. L. From is active.

Publication


Featured researches published by Arthur H. L. From.


Circulation | 2007

Bioenergetic and Functional Consequences of Bone Marrow–Derived Multipotent Progenitor Cell Transplantation in Hearts With Postinfarction Left Ventricular Remodeling

Lepeng Zeng; Qingsong Hu; Xiaohong Wang; Abdul Mansoor; Joseph Lee; Julia Feygin; Ge Zhang; Piradeep Suntharalingam; Sherry Boozer; Abner Mhashilkar; Carmelo J. Panetta; Cory Swingen; Robert Deans; Arthur H. L. From; Robert J. Bache; Catherine M. Verfaillie; Jianyi Zhang

Background— The present study examined whether transplantation of adherent bone marrow-derived stem cells, termed pMultistem, induces neovascularization and cardiomyocyte regeneration that stabilizes bioenergetic and contractile function in the infarct zone and border zone (BZ) after coronary artery occlusion. Methods and Results— Permanent left anterior descending artery occlusion in swine caused left ventricular remodeling with a decrease of ejection fraction from 55±5.6% to 30±5.4% (magnetic resonance imaging). Four weeks after left anterior descending artery occlusion, BZ myocardium demonstrated profound bioenergetic abnormalities, with a marked decrease in subendocardial phosphocreatine/ATP (31P magnetic resonance spectroscopy; 1.06±0.30 in infarcted hearts [n=9] versus 1.90±0.15 in normal hearts [n=8; P<0.01]). This abnormality was significantly improved by transplantation of allogeneic pMultistem cells (subendocardial phosphocreatine/ATP to 1.34±0.29; n=7; P<0.05). The BZ protein expression of creatine kinase-mt and creatine kinase-m isoforms was significantly reduced in infarcted hearts but recovered significantly in response to cell transplantation. MRI demonstrated that the infarct zone systolic thickening fraction improved significantly from systolic “bulging” in untreated animals with myocardial infarction to active thickening (19.7±9.8%, P<0.01), whereas the left ventricular ejection fraction improved to 42.0±6.5% (P<0.05 versus myocardial infarction). Only 0.35±0.05% donor cells could be detected 4 weeks after left anterior descending artery ligation, independent of cell transplantation with or without immunosuppression with cyclosporine A (with cyclosporine A, n=6; no cyclosporine A, n=7). The fraction of grafted cells that acquired an endothelial or cardiomyocyte phenotype was 3% and ≈2%, respectively. Patchy spared myocytes in the infarct zone were found only in pMultistem transplanted hearts. Vascular density was significantly higher in both BZ and infarct zone of cell-treated hearts than in untreated myocardial infarction hearts (P<0.05). Conclusions— Thus, allogeneic pMultistem improved BZ energetics, regional contractile performance, and global left ventricular ejection fraction. These improvements may have resulted from paracrine effects that include increased vascular density in the BZ and spared myocytes in the infarct zone.


Stem Cells | 2006

The Role of the Sca‐1+/CD31− Cardiac Progenitor Cell Population in Postinfarction Left Ventricular Remodeling

Xiaohong Wang; Qingsong Hu; Yasuhiro Nakamura; Joseph Lee; Ge Zhang; Arthur H. L. From; Jianyi Zhang

Cardiac stem cell‐like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca‐1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart‐derived Sca‐1+/CD31− cells may play a role in myocardial infarction‐induced cardiac repair/remodeling. Mouse heart‐derived Sca‐1+/CD31− cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence‐activated cell sorting analysis indicated that endogenous Sca‐1+/CD31− cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca‐1 protein expression in myocardium 7 days after MI. Transplantation of Sca‐1+/CD31− cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end‐diastolic dimension, a decreased LV end‐systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca‐1+/CD31− cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.


Journal of Clinical Investigation | 1993

Bioenergetic abnormalities associated with severe left ventricular hypertrophy.

Jianyi Zhang; Hellmut Merkle; Kristy Hendrich; Michael Garwood; Arthur H. L. From; Kamil Ugurbil; Robert J. Bache

Transmurally localized 31P-nuclear magnetic resonance spectroscopy (NMR) was used to study the effect of severe pressure overload left ventricular hypertrophy (LVH) on myocardial high energy phosphate content. Studies were performed on 8 normal dogs and 12 dogs with severe left ventricular hypertrophy produced by banding the ascending aorta at 8 wk of age. Spatially localized 31P-NMR spectroscopy provided measurements of the transmural distribution of myocardial ATP, phosphocreatine (CP), and inorganic phosphate (Pi); spectra were calibrated from measurements of ATP content in myocardial biopsies using HPLC. Blood flow was measured with microspheres. In hypertrophied hearts during basal conditions, ATP was decreased by 42%, CP by 58%, and the CP/ATP ratio by 32% in comparison with normal. Increasing myocardial blood flow with adenosine did not correct these abnormalities, indicating that they were not the result of persistent hypoperfusion. Atrial pacing at 200 and 240 beats per min caused no change in high energy phosphate content in normal hearts but resulted in further CP depletion with Pi accumulation in the inner left ventricular layers of the hypertrophied hearts. These changes were correlated with redistribution of blood flow away from the subendocardium in LVH hearts. These findings demonstrate that high energy phosphate levels and the CP/ATP ratio are significantly decreased in severe LVH. These abnormalities are proportional to the degree of hypertrophy but are not the result of persistent abnormalities of myocardial perfusion. In contrast, depletion of CP and accumulation of Pi during tachycardia in LVH are closely related to the pacing-induced perfusion abnormalities and likely reflect subendocardial ischemia.


Circulation | 1996

Functional and Bioenergetic Consequences of Postinfarction Left Ventricular Remodeling in a New Porcine Model MRI and 31P-MRS Study

Jianyi Zhang; Norbert Wilke; Ying Wang; Yi Zhang; Chunshen Wang; Marcel H. J. Eijgelshoven; Yong K. Cho; Yo Murakami; Kamil Ugurbil; Robert J. Bache; Arthur H. L. From

BACKGROUND The underlying mechanisms by which left ventricular remodeling (LVR) leads to congestive heart failure (CHF) are unclear. This study examined the functional and bioenergetic abnormalities associated with postinfarction ventricular remodeling in a new, large animal model. METHODS AND RESULTS Remodeling was induced by circumflex coronary artery ligation in young pigs. LV mass, volume, ejection fraction (EF), the ratio of scar surface area to LV surface area, and LV wall stresses were calculated from magnetic resonance imaging anatomic data and simultaneously measured LV pressure. Hemodynamics, transmural blood flow, and high-energy phosphates (spatially localized 31P-nuclear magnetic resonance) were measured under basal conditions, during hyperperfusion induced by pharmacological vasodilation with adenosine, and during pyruvate infusion (11 mg/kg per minute IV). Six of 18 animals with coronary ligation developed clinical CHF while the remaining 12 animals had LV dilation (LVR) without CHF. The results were compared with 16 normal animals. EF decreased from 55.9 +/- 5.6% in normals to 34.6 +/- 2.3% in the LVR group (P < .05) and 24.2 +/- 2.8% in the CHF group (P < .05 versus LVR). The infarct scar was larger in CHF hearts than in LVR hearts (P < .05). In normals, LV myocardial creatine phosphate (CP)/ATP ratios were 2.10 +/- 0.10, 2.06 +/- 0.16, and 1.92 +/- 0.12 in subepicardium (EPI), mid myocardium (MID), and subendocardium (ENDO), respectively. In LVR hearts, the corresponding ratios were decreased to 1.99 +/- 0.13, 1.80 +/- 0.14, and 1.57 +/- 0.15 (ENDO P < .05 versus normal). In CHF hearts, CP/ATP ratios were 1.41 +/- 0.14, 1.33 +/- 0.15, and 1.25 +/- 0.15; (P < .05 versus LVR in EPI and MID). The calculated myocardial free ADP levels were significantly increased only in CHF hearts. CONCLUSIONS Bioenergetic abnormalities in remodeled myocardium are related to the severity of LV dysfunction, which, in turn, is dependent on the severity of the initiating myocardial infarction.


FEBS Letters | 1986

31P-NMR studies of respiratory regulation in the intact myocardium

Arthur H. L. From; Marc Petein; Steven P. Michurski; Stevan D. Zimmer; Kâmil Uǧurbil

The mechanism by which mitochondrial respiration is coupled to ATP consumption in intact tissues is unclear. We determined the relationship between high‐energy phosphate levels and oxygen consumption rate in rat hearts operating over a range of workloads and perfused with different substrates. With pyruvate + glucose perfusion, ADP levels were in general very low, and varied with MVO2 yielding an apparent Km of 25 ± 5 μM, suggesting regulation of oxidative phosphorylation through availability of ADP. In contrast, with glucose perfusion in the presence or absence of insulin, ADP levels, ADP/ATP ratio or the phosphate potential were relatively constant over the workload range examined and generally not correlated with alterations in MVO2; it is suggested that under these conditions, carbon substrate delivery to the mitochondria may control mitochondrial respiration. The common feature of both of the suggested regulatory mechanisms is substrate limitation which, however, is exercised at different metabolic points depending on the carbon substrate available to the myocardium.


Circulation | 1999

Myocardial Oxygenation During High Work States in Hearts With Postinfarction Remodeling

Yo Murakami; Yi Zhang; Yong K. Cho; Abdul Mansoor; Jun K. Chung; Cuixia Chu; Gary S. Francis; Kamil Ugurbil; Robert J. Bache; Arthur H. L. From; Michael Jerosch-Herold; Norbert Wilke; Jianyi Zhang

BACKGROUND Postinfarction left ventricular remodeling (LVR) is associated with reductions in myocardial high-energy phosphate (HEP) levels, which are more severe in animals that develop overt congestive heart failure (CHF). During high work states, further HEP loss occurs, which suggests demand-induced ischemia. This study tested the hypothesis that inadequate myocyte oxygen availability is the basis for these HEP abnormalities. METHODS AND RESULTS Myocardial infarction was produced by left circumflex coronary artery ligation in swine. Studies were performed in 20 normal animals, 14 animals with compensated LVR, and 9 animals with CHF. Phosphocreatine (PCr)/ATP was determined with 31P NMR and deoxymyoglobin (Mb-delta) with 1H NMR in myocardium remote from the infarct. Basal PCr/ATP tended to be decreased in postinfarct hearts, and this was significant in animals with CHF. Infusion of dobutamine (20 microg x kg-1 x min-1 IV) caused doubling of the rate-pressure product in both normal and LVR hearts and resulted in comparable significant decreases of PCr/ATP in both groups. This decrease in PCr/ATP was not associated with detectable Mb-delta. In CHF hearts, rate-pressure product increased only 40% in response to dobutamine; this attenuated response also was not associated with detectable Mb-delta. CONCLUSIONS Thus, the decrease of PCr/ATP during dobutamine infusion is not the result of insufficient myocardial oxygen availability. Furthermore, in CHF hearts, the low basal PCr/ATP and the attenuated response to dobutamine occurred in the absence of myocardial hypoxia, indicating that the HEP and contractile abnormalities were not the result of insufficient oxygen availability.


Circulation | 1995

Effect of Left Ventricular Hypertrophy Secondary to Chronic Pressure Overload on Transmural Myocardial 2-Deoxyglucose Uptake A 31P NMR Spectroscopic Study

Jianyi Zhang; Dirk J. Duncker; Xu Ya; Yi Zhang; Todd Pavek; Horan Wei; Hellmut Merkle; Kâmil Ugurbil; Arthur H. L. From; Robert J. Bache

BACKGROUND This study tested the hypothesis that 31P nuclear magnetic resonance (NMR)-detectable 2-deoxyglucose (2DG) uptake is increased in chronically pressure-overloaded hypertrophied left ventricular myocardium. METHODS AND RESULTS 31P NMR spectroscopy was used to determine the transmural distribution of high-energy phosphate levels and 2-deoxyglucose-6-phosphate (2DGP) accumulation during intracoronary infusion of 2DG (15 mumol.kg body wt-1.min-1) in eight normal dogs and in eight dogs with severe left ventricular hypertrophy (LVH) produced by ascending aortic banding. The ratio of LV weight to body weight was 8.25 +/- 0.65 g/kg in the LVH group compared with 4.35 +/- 0.11 g/kg in the normal group (P < .01). Myocardial ATP content was decreased by approximately 40% and phosphocreatine (PCr) by approximately 60% in LVH hearts. ATP values were transmurally uniform in LVH and normal hearts, whereas PCr was lower in the subendocardium (Endo) than the subepicardium (Epi) of both groups. The PCr/ATP ratio was lower in LVH hearts (1.72 +/- 0.05, 1.64 +/- 0.07, and 1.53 +/- 0.10 in Epi, midwall, and Endo, respectively) compared with normal hearts (2.36 +/- 0.05, 2.09 +/- 0.06, and 1.96 +/- 0.06; each P < .01 normal versus LVH). Arterial blood levels of glucose, insulin, and free fatty acids were comparable between groups, whereas arterial lactate and norepinephrine levels were significantly higher in the LVH group. 2DG infusion did not affect systemic hemodynamics or myocardial high-energy phosphate or inorganic phosphate levels in either group. At the end of 60 minutes of 2DG infusion, there was no detectable accumulation of 2DGP in the normal hearts. However, seven of the eight LVH hearts showed time-dependent accumulation of 2DGP, which was linearly related to the severity of hypertrophy (r = .90 for subendocardial 2DGP versus LV weight/body weight). A transmural gradient of 2DGP was present, with greatest accumulation in the subendocardium (3.3 +/- 1.6, 5.8 +/- 2.3, and 7.9 +/- 2.2 mumol/g in Epi, midwall, and Endo of the LVH hearts, respectively; P < .05 Epi versus Endo). CONCLUSIONS The pressure-overloaded hypertrophied left ventricle demonstrated increased accumulation of 2DGP detected with 31P NMR spectroscopy. Accumulation of 2DGP was positively correlated with the degree of hypertrophy and was most marked in the subendocardium.


FEBS Letters | 1984

High resolution proton NMR studies of perfused rat hearts.

Kamil Ugurbil; Marc Petein; Rubin Maidan; Steve Michurski; Jay N. Cohn; Arthur H. L. From

High resolution 1H NMR spectra of perfused rat hearts have been obtained under normoxic, ischemic and hypoxic conditions. Several myocardial metabolites including taurine, carnitine, lactate and tissue glycerides are detected in the 1H NMR spectra. Changes in oxygen availability induce perturbations in the levels of some metabolites, in particular, lactate. Experiments with fasted rats and with substrate‐free perfusion suggest that the glycerides detected in 1H spectra are metabolically mobilizable but have a slow rate of turnover. These results demonstrate that utility of 1H NMR in monitoring myocardial metabolism.


Cardiovascular Research | 1999

Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy.

Robert J. Bache; Jianyi Zhang; Yo Murakami; Yi Zhang; Yong K. Cho; Helmut Merkle; Guangrong Gong; Arthur H. L. From; Kamil Ugurbil

BACKGROUND High cardiac workloads produced by catecholamine infusion result in loss of myocardial phosphocreatine (PCr) and accumulation of inorganic phosphate (Pi) which are more prominent in heart with left ventricular hypertrophy (LVH) than in normal hearts. Since ischemia can cause changes in phosphorylated compounds similar to those during catecholamine stimulation, this study tested the hypothesis that the exaggerated depletion of PCr and accumulation of Pi during high workloads in LVH is the result of impaired myocyte oxygenation. METHODS AND RESULTS 31P- and 1H-NMR spectroscopy were used to determine myocardial high energy phosphate levels and myoglobin desaturation, respectively, in eight normal dogs and nine dogs with LVH produced by ascending aortic banding. The mean LV weight/body weight ratio was approximately twice normal in the LVH group. Infusion of dobutamine (15 and 30 micrograms/kg/min), and dobutamine + dopamine (each 20 micrograms/kg/min) caused progressive similar increases in the heart rate x systolic LV pressure product to a maximum of 57.4 +/- 3.3 x 10(3) in normal and 63.9 +/- 2.7 x 10(3) in LVH animals, while myocardial oxygen consumption increased from 0.09 +/- 0.01 to 0.24 +/- 0.04 in normals and from 0.10 +/- 0.02 to 0.25 +/- 0.03 ml/min/g in LVH. PCr/ATP ratios during basal conditions were lower in LVH hearts (1.73 +/- 0.10, 1.61 +/- 0.09 and 1.51 +/- 0.09 in subepicardium, midwall and subendocardium, respectively) as compared with normals (2.24 +/- 0.09, 2.01 +/- 0.08 and 1.89 +/- 0.07; each p < 0.01 normal vs. LVH). Catecholamine infusions caused dose-related decreases in PCr/ATP and appearance of Pi which was more marked in LVH than in normal hearts. 1H-NMR spectroscopy did not detect deoxymyoglobin in either normal or LVH hearts even during the highest workloads. In contrast, occlusion of the anterior descending coronary artery resulted in a large deoxymyoglobin signal. CONCLUSIONS Increases of cardiac work produced by catecholamine stimulation resulted in greater decreases of PCr and greater increases of Pi in hypertrophied than in normal hearts. These abnormalities were not the result of inadequate intracellular oxygen availability and consequently cannot be ascribed to demand ischemia.


The New England Journal of Medicine | 1980

Arsenic-Induced Atypical Ventricular Tachycardia

Steven R. Goldsmith; Arthur H. L. From

ARSENIC intoxication can lead to severe multi-system illness, the cardiac manifestations of which have been infrequently stressed in the literature.1 , 2 To our knowledge, associated dysrhythmia ha...

Collaboration


Dive into the Arthur H. L. From's collaboration.

Top Co-Authors

Avatar

Robert J. Bache

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Jianyi Zhang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Khalil Ahmed

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge