Arthur H. Winter
Iowa State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arthur H. Winter.
Journal of the American Chemical Society | 2015
Pratik P. Goswami; Aleem Syed; Christie L. Beck; Toshia R. Albright; Kaitlyn M. Mahoney; Ryan Unash; Emily A. Smith; Arthur H. Winter
Photoremovable protecting groups derived from meso-substituted BODIPY dyes release acetic acid with green wavelengths >500 nm. Photorelease is demonstrated in cultured S2 cells. The photocaging structures were identified by our previously proposed strategy of computationally searching for carbocations with low-energy diradical states as a possible indicator of a nearby productive conical intersection. The superior optical properties of these photocages make them promising alternatives to the popular o-nitrobenzyl photocage systems.
Journal of the American Chemical Society | 2009
Valentyna Voskresenska; R. Marshall Wilson; Maxim S. Panov; Alexander N. Tarnovsky; Jeanette A. Krause; Shubham Vyas; Arthur H. Winter; Christopher M. Hadad
Phenyl azides with powerful electron-donating substituents are known to deviate from the usual photochemical behavior of other phenyl azides. They do not undergo ring expansion but form basic nitrenes that protonate to form nitrenium ions. The photochemistry of the widely used photoaffinity labeling system 4-amino-3-nitrophenyl azide, 5, has been studied by transient absorption spectroscopy from femtosecond to microsecond time domains and from a theoretical perspective. The nitrene generation from azide 5 occurs on the S(2) surface, in violation of Kashas rule. The resulting nitrene is a powerful base and abstracts protons extremely rapidly from a variety of sources to form a nitrenium ion. In methanol, this protonation occurs in about 5 ps, which is the fastest intermolecular protonation observed to date. Suitable proton sources include alcohols, amine salts, and even acidic C-H bonds such as acetonitrile. The resulting nitrenium ion is stabilized by the electron-donating 4-amino group to afford a diiminoquinone-like species that collapses relatively slowly to form the ultimate cross-linked product. In some cases in which the anion is a good hydride donor, cross-linking is replaced by reduction of the nitrenium ion to the corresponding amine.
Journal of the American Chemical Society | 2013
Alexander T. Buck; Joseph T. Paletta; Shalika A. Khindurangala; Christie L. Beck; Arthur H. Winter
We report an organo-paramagnetic switch consisting of a linked bis(viologen) dication diradical that can be cycled reversibly between diamagnetic and paramagnetic states via noncovalent guest-host chemistry with cucurbit[7]uril (CB[7]) in room-temperature water. Computations suggest that the nature of the interaction between the viologen cation radical units is that of a pi dimer (pimer). Molecules with switchable magnetic properties have possible applications in spintronics, data storage devices, chemical sensors, building blocks for materials with switchable bulk magnetic properties, as well as magnetic resonance probes for biological applications.
Journal of the American Chemical Society | 2011
Patrick J. Hanway; Arthur H. Winter
The geometries and energies of the electronic states of phenyloxenium ion 1 (Ph-O(+)) were computed at the multireference CASPT2/pVTZ level of theory. Despite being isoelectronic to phenylnitrene 4, the phenyloxenium ion 1 has remarkably different energetic orderings of its electronic states. The closed-shell singlet configuration ((1)A(1)) is the ground state of the phenyloxenium ion 1, with a computed adiabatic energy gap of 22.1 kcal/mol to the lowest-energy triplet state ((3)A(2)). Open-shell singlet configurations ((1)A(2), (1)B(1), (1)B(2), 2(1)A(1)) are significantly higher in energy (>30 kcal/mol) than the closed-shell singlet configuration. These values suggest a revision to the current assignments of the ultraviolet photoelectron spectroscopy bands for the phenoxy radical to generate the phenyloxenium ion 1. For para-substituted phenyloxenium ions, the adiabatic singlet-triplet energy gap (ΔE(ST)) is found to have a positive linear free energy relationship with the Hammett-like σ(+)(R)/σ(+) substituent parameters; for meta substituents, the relationship is nonlinear and negatively correlated. CASPT2 analyses of the excited states of p-aminophenyloxenium ion 5 and p-cyanophenyloxenium ion 10 indicate that the relative orderings of the electronic states remain largely unperturbed for these para substitutions. In contrast, meta-donor-substituted phenyloxenium ions have low-energy open-shell states (open-shell singlet, triplet) due to stabilization of a π,π* diradical state by the donor substituent. However, all of the other phenyloxenium ions and larger aryloxenium ions (naphthyl, anthryl) included in this study have closed-shell singlet ground states. Consequently, ground-state reactions of phenyloxenium ions are anticipated to be more closely related to closed-shell singlet arylnitrenium ions (Ar-NH(+)) than their isoelectronic arylnitrene (Ar-N) counterparts.
Journal of Organic Chemistry | 2013
Kaitlyn M. Mahoney; Pratik P. Goswami; Arthur H. Winter
We report that aryl phthalate esters are robust self-immolative linkers. This linker is easy to conjugate and releases output phenols upon cleaving a fluoride-sensitive mask to yield a benign phthalic acid byproduct, making these linkers potentially useful as fluoride sensors and promising for use in biological and materials applications.
Organic Letters | 2011
Raffaele R. Perrotta; Arthur H. Winter; Daniel E. Falvey
An earlier computational study (CASPT2/pVDZ) by Winter et al. predicts the 3,5-bis(dimethylamino)benzyl cation to have nearly degenerate singlet and triplet states. Through product studies it is demonstrated that photolysis of 3,5-bis(dimethylamino)benzyl alcohol and its corresponding acetate and phenylacetate esters in alcoholic solvents produces a solvent incorporated adduct, 3,5-bis(dimethylamino)benzyl ethers, and 3,5-bis(dimethylamino)toluene.
Journal of the American Chemical Society | 2010
Arthur H. Winter; Daniel E. Falvey
Computations at the CASPT2, CBS-QB3, and B3LYP levels of theory demonstrate that beta-substitution of vinyl cations with pi-donors switches the ground state of these ions from the familiar closed-shell singlet state to a carbene-like triplet state similar to the electronic state of triplet phenyl cations. Although the parent vinyl cation is a ground-state singlet species with a very large energy gap to the lowest energy triplet state, substituting the beta hydrogens with just one strong pi-donor (e.g., NH(2), NMe(2), OMe) or two moderate pi-donors (e.g., F, OH, Ar, vinyl) makes the triplet state the computed ground electronic state. In many cases, the singlet states for these beta pi-donor-substituted vinyl cations are prone to rearrangements, although such rearrangements can be inhibited through incorporation of the pi-donors into rings. For example, a vinyl cation based on 1,3-dimethyl-2-methylene imidazolidine (32) is predicted to show a substantial barrier to singlet state rearrangement as well as possess a triplet ground state with a large energy gap. In contrast to the singlet states, the stabilized triplet states appear to be well behaved and more immune to rearrangements. These triplet ions may exhibit substantially different properties and reaction chemistry than those seen for typical closed-shell vinyl cations.
Journal of Physical Chemistry B | 2014
Ujjal Bhattacharjee; Christie L. Beck; Arthur H. Winter; Carson Wells; Jacob W. Petrich
Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.
Journal of the American Chemical Society | 2013
Patrick J. Hanway; Jiadan Xue; Ujjal Bhattacharjee; Maeia J. Milot; Zhu Ruixue; David Lee Phillips; Arthur H. Winter
Photolysis of protonated phenylhydroxylamine was studied using product analysis, trapping experiments, and laser flash photolysis experiments (UV-vis and TR(3) detection) ranging from the femtosecond to the microsecond time scale. We find that the excited state of the photoprecursor is followed by two species: a longer-lived transient (150 ns) that we assign to the phenoxy radical and a shorter-lived (3-20 ns) transient that we assign to the singlet phenyloxenium ion. Product studies from photolysis of this precursor show rearranged protonated o-/p-aminophenols and solvent water adducts (catechol, hydroquinone) and ammonium ion. The former products can be largely ascribed to radical recombination or ion recombination, while the latter are ascribed to solvent water addition to the phenyloxenium ion. The phenyloxenium ion is apparently too short-lived under these conditions to be trapped by external nucleophiles other than solvent, giving only trace amounts of o-/p-chloro adducts upon addition of chloride trap. Product studies upon thermolysis of this precursor give the same products as those generated from photolysis, with the difference being that the ortho adducts (o-aminophenol, hydroquinone) are formed in a higher ratio in comparison to the photolysis products.
Journal of the American Chemical Society | 2011
Raffaele R. Perrotta; Arthur H. Winter; William H. Coldren; Daniel E. Falvey
Calculations at the DFT level predict that benzyl anions with strong π-electron-withdrawing groups in the meta position(s) have low energy diradical or triplet electronic states. Specifically, the 2-(3,5-dinitrophenyl)-1,3-dithiane carbanion is predicted to have nearly degenerate singlet and triplet states at the (U)B3LYP level as a free anion. Its lithium ion pair is predicted to be a ground-state triplet with a substantial (26 kcal/mol) singlet-triplet energy gap. Experiments on this anion using chemical trapping, NMR, and the Evans method strongly suggest that this anion is either a triplet or a ground-state singlet with a very low energy triplet state.