Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur Korte is active.

Publication


Featured researches published by Arthur Korte.


Science | 2009

Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors

Yue Ma; Izabela Szostkiewicz; Arthur Korte; Danièle Moes; Yi Yang; Alexander Christmann; Erwin Grill

ABA Receptor Rumbled? The plant hormone abscisic acid (ABA) is critical for normal development and for mediating plant responses to stressful environmental conditions. Now, two papers present analyses of candidate ABA receptors (see the news story by Pennisi). Ma et al. (p. 1064; published online 30 April) and Park et al. (p. 1068, published online 30 April) used independent strategies to search for proteins that physically interact with ABI family phosphatase components of the ABA response signaling pathway. Both groups identified different members of the same family of proteins, which appear to interact with ABI proteins to form a heterocomplex that can act as the ABA receptor. The variety of both families suggests that the ABA receptor may not be one entity, but rather a class of closely related complexes, which may explain previous difficulties in establishing its identity. Links between two ancient multimember protein families signal responses to the plant hormone abscisic acid. The plant hormone abscisic acid (ABA) acts as a developmental signal and as an integrator of environmental cues such as drought and cold. Key players in ABA signal transduction include the type 2C protein phosphatases (PP2Cs) ABI1 and ABI2, which act by negatively regulating ABA responses. In this study, we identify interactors of ABI1 and ABI2 which we have named regulatory components of ABA receptor (RCARs). In Arabidopsis, RCARs belong to a family with 14 members that share structural similarity with class 10 pathogen-related proteins. RCAR1 was shown to bind ABA, to mediate ABA-dependent inactivation of ABI1 or ABI2 in vitro, and to antagonize PP2C action in planta. Other RCARs also mediated ABA-dependent regulation of ABI1 and ABI2, consistent with a combinatorial assembly of receptor complexes.


Science | 2011

A Map of Local Adaptation in Arabidopsis thaliana

Alexandre Fournier-Level; Arthur Korte; Martha D. Cooper; Magnus Nordborg; Johanna Schmitt; Amity M. Wilczek

Field experiments identify loci associated with fitness and local adaptation in Arabidopsis. Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species’ native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.


Nature Genetics | 2012

An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations

Vincent Segura; Bjarni J. Vilhjálmsson; Alexander Platt; Arthur Korte; Ümit Seren; Quan Long; Magnus Nordborg

Population structure causes genome-wide linkage disequilibrium between unlinked loci, leading to statistical confounding in genome-wide association studies. Mixed models have been shown to handle the confounding effects of a diffuse background of large numbers of loci of small effect well, but they do not always account for loci of larger effect. Here we propose a multi-locus mixed model as a general method for mapping complex traits in structured populations. Simulations suggest that our method outperforms existing methods in terms of power as well as false discovery rate. We apply our method to human and Arabidopsis thaliana data, identifying new associations and evidence for allelic heterogeneity. We also show how a priori knowledge from an A. thaliana linkage mapping study can be integrated into our method using a Bayesian approach. Our implementation is computationally efficient, making the analysis of large data sets (n > 10,000) practicable.


Cell | 2016

1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana

Carlos Alonso-Blanco; Jorge Andrade; Claude Becker; Felix Bemm; Joy Bergelson; Karsten M. Borgwardt; Jun Cao; Eunyoung Chae; Todd M. Dezwaan; Wei Ding; Joseph R. Ecker; Moises Exposito-Alonso; Ashley Farlow; Joffrey Fitz; Xiangchao Gan; Dominik Grimm; Angela M. Hancock; Stefan R. Henz; Svante Holm; Matthew Horton; Mike Jarsulic; Randall A. Kerstetter; Arthur Korte; Pamela Korte; Christa Lanz; Cheng-Ruei Lee; Dazhe Meng; Todd P. Michael; Richard Mott; Ni Wayan Muliyati

Summary Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes.


Nature Genetics | 2012

A mixed-model approach for genome-wide association studies of correlated traits in structured populations

Arthur Korte; Bjarni J. Vilhjálmsson; Vincent Segura; Alexander Platt; Quan Long; Magnus Nordborg

Genome-wide association studies (GWAS) are a standard approach for studying the genetics of natural variation. A major concern in GWAS is the need to account for the complicated dependence structure of the data, both between loci as well as between individuals. Mixed models have emerged as a general and flexible approach for correcting for population structure in GWAS. Here, we extend this linear mixed-model approach to carry out GWAS of correlated phenotypes, deriving a fully parameterized multi-trait mixed model (MTMM) that considers both the within-trait and between-trait variance components simultaneously for multiple traits. We apply this to data from a human cohort for correlated blood lipid traits from the Northern Finland Birth Cohort 1966 and show greatly increased power to detect pleiotropic loci that affect more than one blood lipid trait. We also apply this approach to an Arabidopsis thaliana data set for flowering measurements in two different locations, identifying loci whose effect depends on the environment.


Nature Genetics | 2013

Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden

Quan Long; Fernando A. Rabanal; Dazhe Meng; Christian D. Huber; Ashley Farlow; Alexander Platzer; Qingrun Zhang; Bjarni J. Vilhjálmsson; Arthur Korte; Viktoria Nizhynska; Viktor Voronin; Pamela Korte; Laura Sedman; Terezie Mandáková; Martin A. Lysak; Ümit Seren; Ines Hellmann; Magnus Nordborg

Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition.


Plant Journal | 2010

Closely related receptor complexes differ in their ABA selectivity and sensitivity

Izabela Szostkiewicz; Klaus Richter; Michal Kepka; Simone Demmel; Yue Ma; Arthur Korte; Farhah F. Assaad; Alexander Christmann; Erwin Grill

The recent discovery of a variety of receptors has led to new models for hormone perception in plants. In the case of the hormone abscisic acid (ABA), which regulates plant responses to abiotic stress, perception seems to occur both at the plasma membrane and in the cytosol. The cytosolic receptors for ABA have recently been identified as complexes between protein phosphatases 2C (PP2C) and regulatory components (RCAR/PYR/PYL) that bind ABA. Binding of ABA to the receptor complexes inactivates the PP2Cs, thereby activating the large variety of physiological processes regulated by ABA. The Arabidopsis genome encodes 13 homologues of RCAR1 and approximately 80 PP2Cs, of which six in clade A have been identified as negative regulators of ABA responses. In this study we characterize a novel member of the RCAR family, RCAR3. RCAR3 was identified in a screen for interactors of the PP2Cs ABI1 and ABI2, which are key regulators of ABA responses. RCAR3 was shown to repress ABI1 and ABI2 in vitro, and to stimulate ABA signalling in protoplast cells. RCAR3 conferred greater ABA sensitivity to the PP2C regulation than RCAR1, whereas stereo-selectivity for (S)-ABA was less stringent with RCAR3 as compared with RCAR1. In addition, regulation of the protein phosphatase activity by RCAR1 and RCAR3 was more sensitive to ABA for ABI1 than for ABI2. Based on the differences we have observed in transcriptional regulation and biochemical properties, we propose a model whereby differential expression of the co-receptors and combinatorial assembly of the receptor complexes act in concert to modulate and fine-tune ABA responses.


Plant Physiology | 2003

Impaired Induction of the Jasmonate Pathway in the Rice Mutant hebiba

Michael Riemann; Axel Müller; Arthur Korte; Masaki Furuya; Elmar W. Weiler; Peter Nick

The elongation of rice (Oryza sativa) coleoptiles is inhibited by light, and this photoinhibition was used to screen for mutants with impaired light response. In one of the isolated mutants, hebiba, coleoptile elongation was stimulated in the presence of red light, but inhibited in the dark. Light responses of endogenous indolyl-3-acetic acid and abscisic acid were identical between the wild type and the mutant. In contrast, the wild type showed a dramatic increase of jasmonate heralded by corresponding increases in the content of its precursor o-phytodienoic acid, whereas both compounds were not detectable in the mutant. The jasmonate response to wounding was also blocked in the mutant. The mutant phenotype was rescued by addition of exogenous methyl jasmonate and o-phytodienoic acid. Moreover, the expression of O. sativa 12-oxophytodienoic acid reductase, an early gene of jasmonic acid-synthesis, is induced by red light in the wild type, but not in the mutant. This evidence suggests a novel role for jasmonates in the light response of growth, and we discuss a cross-talk between jasmonate and auxin signaling. In addition, hebiba represents the first rice mutant in which the induction of the jasmonate pathway is impaired providing a valuable tool to study the role of jasmonates in Graminean development.


Plant Journal | 2008

Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis

Danièle Moes; Axel Himmelbach; Arthur Korte; Georg Haberer; Erwin Grill

ABI1, a protein phosphatase 2C, is a key component of ABA signal transduction in Arabidopsis that regulates numerous ABA responses, such as stomatal closure, seed germination and inhibition of vegetative growth. The abi1-1 mutation, so far the only characterized dominant allele for ABI1, impairs ABA responsitivity in both seeds and vegetative tissues. The site of action of ABI1 is unknown. We show that there is an essential requirement for nuclear localization of abi1 to confer insensitivity towards ABA responses. Transient analyses in protoplasts revealed a strict dependence of wild-type ABI1 and mutant abi1 on a functional nuclear localization sequence (NLS) for regulating ABA-dependent gene expression. Arabidopsis lines with ectopic expression of various abi1 forms corroborated the necessity of a functional NLS to control ABA sensitivity. Disruption of the NLS function in abi1 rescued ABA-controlled gene transcription to wild-type levels, but also attenuated abi1-conferred insensitivity towards ABA during seed germination, root growth and stomatal movement. The mutation in the PP2C resulted in a preferential accumulation of the protein in the nucleus. Application of a proteosomal inhibitor led to both a preferential nuclear accumulation of ABI1 and an enhancement of PP2C-dependent inhibitory action on the ABA response. Thus, abi1-1 acts as a hypermorphic allele, and ABI1 reprograms sensitivity towards ABA in the nucleus.


PLOS ONE | 2012

Arabidopsis thaliana AUCSIA-1 Regulates Auxin Biology and Physically Interacts with a Kinesin-Related Protein

Barbara Molesini; Tiziana Pandolfini; Youry Pii; Arthur Korte; Angelo Spena

Aucsia is a green plant gene family encoding 44–54 amino acids long miniproteins. The sequenced genomes of most land plants contain two Aucsia genes. RNA interference of both tomato (Solanum lycopersicum) Aucsia genes (SlAucsia-1 and SlAucsia-2) altered auxin sensitivity, auxin transport and distribution; it caused parthenocarpic development of the fruit and other auxin-related morphological changes. Here we present data showing that the Aucsia-1 gene of Arabidopsis thaliana alters, by itself, root auxin biology and that the AtAUCSIA-1 miniprotein physically interacts with a kinesin-related protein. The AtAucsia-1 gene is ubiquitously expressed, although its expression is higher in roots and inflorescences in comparison to stems and leaves. Two allelic mutants for AtAucsia-1 gene did not display visible root morphological alterations; however both basipetal and acropetal indole-3-acetic acid (IAA) root transport was reduced as compared with wild-type plants. The transcript steady state levels of the auxin efflux transporters ATP BINDING CASSETTE subfamily B (ABCB) ABCB1, ABCB4 and ABCB19 were reduced in ataucsia-1 plants. In ataucsia-1 mutant, lateral root growth showed an altered response to i) exogenous auxin, ii) an inhibitor of polar auxin transport and iii) ethylene. Overexpression of AtAucsia-1 inhibited primary root growth. In vitro and in vivo protein-protein interaction experiments showed that AtAUCSIA-1 interacts with a 185 amino acids long fragment belonging to a 2712 amino acids long protein of unknown function (At4g31570). Bioinformatics analysis indicates that the AtAUCSIA-1 interacting protein (AtAUCSIA-1IP) clusters with a group of CENP-E kinesin-related proteins. Gene ontology predictions for the two proteins are consistent with the hypothesis that the AtAUCSIA-1/AtAUCSIA-1IP complex is involved in the regulation of the cytoskeleton dynamics underlying auxin biology.

Collaboration


Dive into the Arthur Korte's collaboration.

Top Co-Authors

Avatar

Magnus Nordborg

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ümit Seren

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjarni J. Vilhjálmsson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Dazhe Meng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quan Long

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Eriko Sasaki

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge