Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur L. Nikkel is active.

Publication


Featured researches published by Arthur L. Nikkel.


The Journal of Neuroscience | 2007

Broad-Spectrum Efficacy across Cognitive Domains by α7 Nicotinic Acetylcholine Receptor Agonism Correlates with Activation of ERK1/2 and CREB Phosphorylation Pathways

Robert S. Bitner; William H. Bunnelle; David J. Anderson; Clark A. Briggs; Jerry J. Buccafusco; Peter Curzon; Michael W. Decker; Jennifer M. Frost; Jens Halvard Grønlien; Earl J. Gubbins; Jinhe Li; John Malysz; Stella Markosyan; Kennan C. Marsh; Michael D. Meyer; Arthur L. Nikkel; Richard J. Radek; Holly M. Robb; Daniel B. Timmermann; James P. Sullivan; Murali Gopalakrishnan

The α7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel α7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (K i = 10.8 nm) and human (K i = 16.7 nm) α7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the α7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that α7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of α7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked α7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that α7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimers disease and schizophrenia.


Brain Research | 2009

Localization of histamine H4 receptors in the central nervous system of human and rat

Marina I. Strakhova; Arthur L. Nikkel; Arlene M. Manelli; Gin C. Hsieh; Timothy A. Esbenshade; Jorge D. Brioni; Robert S. Bitner

Existing data on the expression of H(4) histamine receptor in the CNS are conflicting and inconclusive. In this report, we present the results of experiments that were conducted in order to elucidate H(4) receptor expression and localization in the brain, spinal cord, and dorsal root ganglia (DRG). Here we show that transcripts of H(4) receptor are present in all analyzed regions of the human CNS, including spinal cord, hippocampus, cortex, thalamus and amygdala, with the highest levels of H(4) mRNA detected in the spinal cord. In rat, H(4) mRNA was detected in cortex, cerebellum, brainstem, amygdala, thalamus and striatum. Very low levels of H(4) mRNA were detected in hypothalamus, and no H(4) signal was detected in the rat hippocampus. Fairly low levels of H(4) mRNA were detected in examined peripheral tissues including spleen and liver. Interestingly, strong expression of H(4) mRNA was detected in the rat DRG and spinal cord. Immunohistochemical analysis revealed expression of H(4) receptors on neurons in the rat lumbar DRG and in the lumbar spinal cord. Our observations provide evidence of the H(4) presence in both human and rodent CNS and offer some insight into possible role of H(4) in itch and pain.


Journal of Pharmacology and Experimental Therapeutics | 2010

In Vivo Pharmacological Characterization of a Novel Selective α7 Neuronal Nicotinic Acetylcholine Receptor Agonist ABT-107: Preclinical Considerations in Alzheimer's Disease

R. Scott Bitner; William H. Bunnelle; Michael W. Decker; Karla Drescher; Kathy L. Kohlhaas; Stella Markosyan; Kennan C. Marsh; Arthur L. Nikkel; Kaitlin E. Browman; Rich Radek; David J. Anderson; Jerry J. Buccafusco; Murali Gopalakrishnan

We previously reported that α7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimers disease (AD) pathology. In the present studies, the selective and potent α7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an α7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting α7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential therapeutic viability associated with the α7 nAChR approach in the treatment of AD.


Brain Research | 2000

Reduced nicotinic receptor-mediated antinociception following in vivo antisense knock-down in rat.

Robert S. Bitner; Arthur L. Nikkel; Peter Curzon; Diana L. Donnelly-Roberts; Pamela S. Puttfarcken; M. Namovic; I.C. Jacobs; M.D. Meyer; Michael W. Decker

Pharmacological activation of neuronal nicotinic acetylcholine receptors can produce non-opioid antinociception in rodents. However, multiple nAChR subtypes exist, the most abundant of which contain alpha4 and beta2 subunits. The purpose of the present study was to investigate the role of alpha4-containing nAChRs in mediating nicotinic antinociception using an in vivo antisense strategy. Both i.c.v. infusion and repeated bolus injections into the cerebral aqueduct of an antisense oligonucleotide against the alpha4 subunit significantly attenuated the antinociceptive effects of the nAChR agonist A-85380 in the paw withdrawal test of acute thermal pain. Rats treated with a scrambled oligonucleotide displayed a full antinociceptive response to A-85380, while discontinuing antisense treatment restored the antinociceptive effects of the nicotinic agonist. Double immunohistochemical labeling revealed near-complete overlap of expression of the serotonin marker tryptophan hydroxylase and the alpha4 nAChR subunit in the dorsal raphe nucleus. The expression of alpha4-containing nAChRs by serotonergic neurons in the dorsal raphe offered a means to address nonspecific alpha4 knock-down, i.e., oligonucleotide-induced neurotoxicity. Immunohistochemical detection of alpha4 expression was reduced by nearly 50% in the dorsal raphe of antisense-treated rats as compared to either saline or missense-treated controls. In contrast, the expression of tryptophan hydroxylase, as well as, the alpha7 nAChR subunit in antisense-infused rats was similar to that observed in saline- and missense-treated controls. The results of these studies suggest that alpha4-containing nAChRs, possibly expressed by serotonergic neurons, are involved in nicotinic-mediated analgesia. However, these data do not eliminate the possibility that other nicotinic subunit combinations may also play a role in antinociception produced by nAChR activation.


CNS Neuroscience & Therapeutics | 2008

Preclinical Characterization of A‐582941: A Novel α7 Neuronal Nicotinic Receptor Agonist with Broad Spectrum Cognition‐Enhancing Properties

Karin R. Tietje; David J. Anderson; R. Scott Bitner; Eric A.G. Blomme; Paul J. Brackemeyer; Clark A. Briggs; Kaitlin E. Browman; Dagmar Bury; Peter Curzon; Karla Drescher; Jennifer M. Frost; Ryan M. Fryer; Gerard B. Fox; Jens Halvard Grønlien; Monika Håkerud; Earl J. Gubbins; Sabine Halm; Richard R. Harris; Rosalind Helfrich; Kathy L. Kohlhaas; Devalina Law; John Malysz; Kennan C. Marsh; Ruth L. Martin; Michael D. Meyer; Angela L. Molesky; Arthur L. Nikkel; Stephani Otte; Liping Pan; Pamela S. Puttfarcken

Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the α7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine α7 nAChR agonist, A‐582941. A‐582941 was found to exhibit high‐affinity binding and partial agonism at α7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A‐582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A‐582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short‐term recognition memory, memory consolidation, and sensory gating deficit. A‐582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that α7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.


Brain Research | 2009

Selective α7 nicotinic acetylcholine receptor activation regulates glycogen synthase kinase3β and decreases tau phosphorylation in vivo

Robert S. Bitner; Arthur L. Nikkel; Stella Markosyan; Stephani Otte; Pamela S. Puttfarcken; Murali Gopalakrishnan

The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and has generated recent interest as a potential drug target for treating neurodegenerative disorders such as Alzheimers disease (AD). The property of Ca(2+) permeation associated with alpha7 nAChR agonism may lead to Ca(2+)-dependent intracellular signaling that contribute to the procognitive and neuroprotective effects that have been described with this pharmacology. In this study, we investigated whether alpha7 nAChR agonism leads to increased phosphorylation of the inhibitory regulating amino acid residue Ser-9 on GSK3beta, a major kinase responsible for tau hyperphosphorylation in AD neuropathology. Immunohistochemical analysis revealed that the selective alpha7 agonist A-582941 increased S(9)-GSK3beta phosphorylation in mouse cingulate cortex and hippocampus that was not observed in alpha7 nAChR knock-out mice. A-582941 steady state exposure through continuous (2 wk) infusion also increased S(9)-GSK3beta phosphorylation in the hippocampus of Tg2576 (APP), as well as wild-type mice. Moreover, A-582941 continuous infusion decreased phosphorylation of tau in hippocampal CA3 Mossy fibers and spinal motoneurons in a hypothermia-induced tau hyperphosphorylation mouse model and AD double transgenic APP/tau mouse line, respectively. These studies demonstrate that inactivation of GSK3beta may be associated with alpha7 nAChR-induced signaling leading to attenuated tau hyperphosphorylation, raising the intriguing possibility that alpha7 nAChR agonism may have disease modifying benefit in the treatment of tauopathies, in particular AD.


Neuropharmacology | 2011

In-vivo histamine H3 receptor antagonism activates cellular signaling suggestive of symptomatic and disease modifying efficacy in Alzheimer's disease.

R. Scott Bitner; Stella Markosyan; Arthur L. Nikkel; Jorge D. Brioni

Histamine H(3) receptor antagonists enhance cognition in preclinical models and have been proposed as novel therapeutics for cognitive disorders, in particular Alzheimers disease (AD). Increased neurotransmitter (e.g. acetylcholine and histamine) release associated with this pharmacology may lead to activation of postsynaptic signaling pathways relevant to cognition and neuroprotection, such as increased phosphorylation of CREB, a transcription factor germane to cognitive function, and the inhibitory residue (Ser-9) of GSK3β, a primary tau kinase associated with AD pathology. In the present studies, acute administration of the H(3)-antagonist ABT-239 (0.01-1.0mg/kg i.p.) increased cortical CREB and S(9)-GSK3β phosphorylation in CD1 mice. Donepezil, while increasing CREB phosphorylation, did not increase pS(9)-GSK3β expression in contrast to ABT-239. Continuous (2-wk) s.c. infusion of ABT-239 (0.7 mg/kg/day) normalized reduced cortical CREB and hippocampal S(9)-GSK3β phosphorylation observed in Tg2576 (APP) AD-transgenic mice. In addition, ABT-239 infusion reversed tau hyperphosphorylation in the spinal cord and hippocampus of TAPP (tau × APP) AD-transgenic mice. Interestingly, ABT-239 produced signaling changes (pS(9)-GSK3β) in α7 nicotinic acetylcholine receptor (nAChR) knockout mice. In contrast to wild type, these mice do not exhibit α7 nAChR agonist induced phosphorylation, thus suggesting that H(3)-antagonist-mediated signaling is not dependent on ACh-stimulated α7 nAChR activation. In summary, results of these studies suggest that ABT-239 leads to biochemical signaling that promotes cognitive performance as well as attenuation of tau hyperphosphorylation, raising the intriguing possibility that H(3) antagonists have potential for both symptomatic and disease modifying benefit in the treatment of AD.


Neuropharmacology | 2006

Dopamine D4 receptor signaling in the rat paraventricular hypothalamic nucleus: Evidence of natural coupling involving immediate early gene induction and mitogen activated protein kinase phosphorylation

Robert S. Bitner; Arthur L. Nikkel; Stephani Otte; Brenda Martino; Eve H. Barlow; Pramila Bhatia; Andrew O. Stewart; Jorge D. Brioni; Michael W. Decker; Robert B. Moreland

The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity.


Journal of The American Society of Nephrology | 2017

Targeting Anti–TGF-β Therapy to Fibrotic Kidneys with a Dual Specificity Antibody Approach

Steve McGaraughty; Rachel Davis-Taber; Chang Z. Zhu; Todd B. Cole; Arthur L. Nikkel; Meha Chhaya; Kelly J. Doyle; Lauren Olson; Gregory Preston; Christine Grinnell; Katherine Salte; Anthony M. Giamis; Yanping Luo; Victor Sun; Andrew Goodearl; Murali Gopalakrishnan; Susan E. Lacy

Targeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury. In a mouse unilateral ureteral obstruction (UUO) model of renal fibrosis, injury induced significant upregulation of FnEDA in the obstructed kidney. Using dual variable domain Ig (DVD-Ig) technology, we constructed a molecule with a moiety to target FnEDA and a second moiety to neutralize TGF-β After systemic injection of the bispecific TGF-β + FnEDA DVD-Ig or an FnEDA mAb, chemiluminescent detection and imaging with whole-body single-photon emission computed tomography (SPECT) revealed significantly higher levels of each molecule in the obstructed kidney than in the nonobstructed kidney, the ipsilateral kidney of sham animals, and other tissues. In comparison, a systemically administered TGF-β mAb accumulated at lower concentrations in the obstructed kidney and exhibited a more diffuse whole-body distribution. Systemic administration of the bispecific DVD-Ig or the TGF-β mAb (1-10 mg/kg) but not the FnEDA mAb attenuated the injury-induced collagen deposition detected by immunohistochemistry and elevation in Col1a1, FnEDA, and TIMP1 mRNA expression in the obstructed kidney. Overall, systemic delivery of a bispecific molecule targeting an extracellular matrix protein and delivering a TGF-β mAb resulted in a relatively focal uptake in the fibrotic kidney and reduced renal fibrosis.


Neuroscience Research | 2008

Analysis of gene expression profiles in rat hippocampus following treatment with nicotine and an α7 nAChR selective agonist

Jeffrey F. Waring; Stephen J Abel; Jinhe Li; R. Scott Bitner; Arthur L. Nikkel; Eric A.G. Blomme; David J. Anderson; Murali Gopalakrishnan

The nicotinic acetylcholine receptors (nAChRs) play critical roles in neuronal transmission and modulation. Among the diverse nAChRs, the alpha7 subtype has been considered as a potential therapeutic target for treating cognitive deficits associated with neuropsychiatric and neurodegenerative diseases. Although a number of mechanisms including neurotransmitter and biochemical effects linking alpha7 nAChR activation and cognitive function are beginning to be described, the underlying molecular processes especially following repeated administration remain unclear. To address this, we have performed gene expression analysis in rats treated with nicotine and a selective alpha7 nAChR agonist, PNU-282987. Our results showed significant overlap in gene expression changes induced by PNU-282987 and nicotine, suggesting convergent pathways triggered by these compounds. Treatment with nicotine also resulted in regulation of a number of genes that were not regulated by PNU-282987, consistent with the interaction of nicotine with other nAChRs beyond the alpha7 subtype. Interestingly, these gene expression changes were observed 24 h post-dose, suggesting that both nicotine and PNU-282987 cause protracted changes in gene expression. Overall, our results identify gene expression changes that may contribute to further defining the roles of nAChR activation in cognitive function.

Collaboration


Dive into the Arthur L. Nikkel's collaboration.

Top Co-Authors

Avatar

Murali Gopalakrishnan

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Anderson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerard B. Fox

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Clark A. Briggs

Beckman Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge