Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur M. Lesk is active.

Publication


Featured researches published by Arthur M. Lesk.


The EMBO Journal | 1986

The relation between the divergence of sequence and structure in proteins.

Cyrus Chothia; Arthur M. Lesk

Homologous proteins have regions which retain the same general fold and regions where the folds differ. For pairs of distantly related proteins (residue identity approximately 20%), the regions with the same fold may comprise less than half of each molecule. The regions with the same general fold differ in structure by amounts that increase as the amino acid sequences diverge. The root mean square deviation in the positions of the main chain atoms, delta, is related to the fraction of mutated residues, H, by the expression: delta(A) = 0.40 e1.87H.


Journal of Molecular Biology | 1980

How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins.

Arthur M. Lesk; Cyrus Chothia

To determine how different amino acid sequences form similar protein structures, and how proteins adapt to mutations that change the volume of residues buried in their close-packed interiors, we have analysed and compared the atomic structures of nine different globins. The homology of the sequences in the two most distantly related molecules is only 16%. The principal determinants of three-dimensional structure of these proteins are the approximately 59 residues involved in helix to helix and helix to haem packings. Half of these residues are buried within the molecules. The observed variations in the sequence keep the side-chains of buried residues non-polar, but do not maintain their size: the mean variation of the volume among homologous amino acids is 56 A3. Changes in the volumes of buried residues are accompanied by changes in the geometry of the helix packings. The relative positions and orientations of homologous pairs of helices in the globins differ by rigid body shifts of up to 7 A and 30 °. In order to retain functional activity these shifts are coupled so that the geometry of the residues forming the haem pocket is very similar in all the globins. We discuss the implications of these results for the mechanism of protein evolution.


Quarterly Reviews of Biophysics | 2003

Prediction of protein function from protein sequence and structure

James C. Whisstock; Arthur M. Lesk

The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.


Proteins | 2006

MUSTANG: A multiple structural alignment algorithm

Arun Siddhartha Konagurthu; James C. Whisstock; Peter J. Stuckey; Arthur M. Lesk

Multiple structural alignment is a fundamental problem in structural genomics. In this article, we define a reliable and robust algorithm, MUSTANG (MUltiple STructural AligNment AlGorithm), for the alignment of multiple protein structures. Given a set of protein structures, the program constructs a multiple alignment using the spatial information of the Cα atoms in the set. Broadly based on the progressive pairwise heuristic, this algorithm gains accuracy through novel and effective refinement phases. MUSTANG reports the multiple sequence alignment and the corresponding superposition of structures. Alignments generated by MUSTANG are compared with several handcurated alignments in the literature as well as with the benchmark alignments of 1033 alignment families from the HOMSTRAD database. The performance of MUSTANG was compared with DALI at a pairwise level, and with other multiple structural alignment tools such as POSA, CE‐MC, MALECON, and MultiProt. MUSTANG performs comparably to popular pairwise and multiple structural alignment tools for closely related proteins, and performs more reliably than other multiple structural alignment methods on hard data sets containing distantly related proteins or proteins that show conformational changes. Proteins 2006.


Journal of Molecular Biology | 1992

Structural repertoire of the human VH segments.

Cyrus Chothia; Arthur M. Lesk; Ermanno Gherardi; Ian Tomlinson; Gerald Walter; James D. Marks; Meirion B. Llewelyn; Greg Winter

The VH gene segments produce the part of the VH domains of antibodies that contains the first two hypervariable regions. The sequences of 83 human VH segments with open reading frames, from several individuals, are currently known. It has been shown that these sequences are likely to form a high proportion of the total human repertoire and that an individuals gene repertoire produces about 50 VH segments with different protein sequences. In this paper we present a structural analysis of the amino acid sequences produced by the 83 segments. Particular residue patterns in the sequences of V domains imply particular main-chain conformations, canonical structures, for the hypervariable regions. We show that, in almost all cases, the residue patterns in the VH segments imply that the first hypervariable regions have one of three different canonical structures and that the second hypervariable regions have one of five different canonical structures. The different observed combinations of the canonical structures in the first and second regions means that almost all sequences have one of seven main-chain folds. We describe, in outline, structures of the antigen binding site loops produced by nearly all the VH segments. The exact specificity of the loops is produced by (1) sequence differences in their surface residues, particularly at sites near the centre of the combining site, and (2) sequence differences in the hypervariable and framework regions that modulate the relative positions of the loops.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Amyloid fibers are water-filled nanotubes

Max F. Perutz; John T. Finch; J. Berriman; Arthur M. Lesk

A study of papers on amyloid fibers suggested to us that cylindrical β-sheets are the only structures consistent with some of the x-ray and electron microscope data. We then found that our own 7-year-old and hitherto enigmatic x-ray diagram of poly-l-glutamine fits a cylindrical sheet of 31 Å diameter made of β-strands with 20 residues per helical turn. Successive turns are linked by hydrogen bonds between both the main chain and side chain amides, and side chains point alternately into and out of the cylinder. Fibers of the exon-1 peptide of huntingtin and of the glutamine- and asparagine-rich region of the yeast prion Sup35 give the same underlying x-ray diagrams, which show that they have the same structure. Electron micrographs show that the 100-Å-thick fibers of the Sup35 peptide are ropes made of three protofibrils a little over 30 Å thick. They have a measured mass of 1,450 Da/Å, compared with 1,426 Da/Å for a calculated mass of three protofibrils each with 20 residues per helical turn wound around each other with a helical pitch of 510 Å. Published x-ray diagrams and electron micrographs show that fibers of synuclein, the protein that forms the aggregates of Parkinson disease, consist of single cylindrical β-sheets. Fibers of Alzheimer Aβ fragments and variants are probably made of either two or three concentric cylindrical β-sheets. Our structure of poly-l-glutamine fibers may explain why, in all but one of the neurodegenerative diseases resulting from extension of glutamine repeats, disease occurs when the number of repeats exceeds 37–40. A single helical turn with 20 residues would be unstable, because there is nothing to hold it in place, but two turns with 40 residues are stabilized by the hydrogen bonds between their amides and can act as nuclei for further helical growth. The Aβ peptide of Alzheimers disease contains 42 residues, the best number for nucleating further growth. All these structures are very stable; the best hope for therapies lies in preventing their growth.


The EMBO Journal | 1988

The outline structure of the T-cell alpha beta receptor.

Cyrus Chothia; D R Boswell; Arthur M. Lesk

From an analysis of the immunoglobulins of known structure we derive a list of 40 sites crucial for the conserved structure of the variable domains. We show that, with marginal exceptions, the sequences of the T‐cell alpha beta receptors contain, at sites homologous to these 40, the same or very similar residues. Thus the V alpha‐V beta dimer has a framework structure very close to that of the immunoglobulins. Further comparisons show that parts of the surface of the V alpha‐V beta framework are hypervariable. They also show that the loops that form the antigen‐binding site are similar in size to those commonly found in the immunoglobulins but have different conformations. Only limited sequence variations occur in the first loop of the antigen‐binding site in both V alpha and V beta. This, and their geometrical arrangement, suggest that they mainly interact with the MHC proteins.


Journal of Molecular Biology | 1992

β-Trefoil fold: Patterns of structure and sequence in the Kunitz inhibitors interleukins-1β and 1α and fibroblast growth factors

Alexey G. Murzin; Arthur M. Lesk; Cyrus Chothia

Abstract Previous crystallographic analyses of the Kunitz inhibitors from soybean, Erythrina caffra and wheat, the interleukins-1β and 1α and the acidic and basic fibroblast growth factors have shown that they contain a most unusual fold. It is formed by six two-stranded hairpins. Three of these form a barrel structure and the other three are in a triangular array that caps the barrel. The arrangement of the secondary structures gives the molecules a pseudo 3-fold axis. Although the different proteins have very similar structures, many of their sequences have no significant similarities overall. The structural determinants of this fold are described and discussed in this paper. The barrels in the different proteins have the same geometrical features: six strands tilted at 56 ° to the barrel axis; a barrel diameter of 16 A, and the β-sheet hydrogen bonded so that it is staggered with a shear number of 12. These features fit McLachlans equations for ideal barrels formed by β-sheets. The wide diameter of the barrels is filled by layers of residues that, while not identical in the different proteins, are, in almost all cases, large. The structure of the triangular array of hairpins is determined by the coiling of the strands and the packing of hairpin residues against each other and against residues from the interior of the barrel. The major sequence requirements of this fold are large or medium hydrophobic resiudes at 18 buried sites. In the different structures the total volume of these residues is 3000(±120) A 3 . The polyhedron model of protein architecture is used to demonstrate that the main, and in particular the symmetrical, features of this fold arise from the ideal and equal packing of six hairpins, modified only slightly to form hydrogen bonds between the hairpins.


Nature | 2008

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller; Daniela I. Drautz; Aakrosh Ratan; Barbara Pusey; Ji Qi; Arthur M. Lesk; Lynn P. Tomsho; Michael Packard; Fangqing Zhao; Andrei Sher; Alexei Tikhonov; Brian J. Raney; Nick Patterson; Kerstin Lindblad-Toh; Eric S. Lander; James Knight; Gerard P. Irzyk; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Tom H. Pringle; Stephan C. Schuster

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5–2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.


Journal of Molecular Biology | 1990

Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins

Anna Tramontano; Cyrus Chothia; Arthur M. Lesk

Analysis of the immunoglobulins of known structure reveals systematic differences in the position and main-chain conformation of the second hypervariable region of the VH domain (H2). We show that the major determinant of the position of H2 is the size of the residue at site 71, a site that is in the conserved framework of the VH domain. It is likely that for about two thirds of the known VH sequences the size of the residue at this site is also a major determinant of the conformation of H2. This effect can override the predisposition of the sequence, as in the case of the H2 loop of J539, which is an exception to the rules relating sequence and conformation of short hairpin loops. Understanding the relationship between the residue at position 71 and the position and conformation of H2 has applications to the prediction and engineering of antigen-binding sites of immunoglobulins.

Collaboration


Dive into the Arthur M. Lesk's collaboration.

Top Co-Authors

Avatar

Cyrus Chothia

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

James C. Whisstock

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Anna Tramontano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Irving

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Qi

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge