Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arthur Mortha is active.

Publication


Featured researches published by Arthur Mortha.


Annual Review of Immunology | 2013

The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting

Miriam Merad; Priyanka Sathe; Julie Helft; Jennifer L. Miller; Arthur Mortha

Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.


Science | 2014

Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

Arthur Mortha; Aleksey Chudnovskiy; Daigo Hashimoto; Milena Bogunovic; Sean P. Spencer; Yasmine Belkaid; Miriam Merad

Introduction The gastrointestinal tract is colonized by an extraordinarily large number of commensal microbes and is constantly exposed to ingested antigens and potential pathogens. Regulation of intestinal tolerance thus represents the main task of the immune system of the gut mucosa. Accumulated evidence suggests that gut commensals contribute to the maintenance of intestinal homeostasis, partly through their ability to control the differentiation of effector T lymphocytes in the mucosa and to modulate inflammatory responses through the induction of regulatory T cells (Tregs) and interleukin-10 (IL-10) production. Tissue-resident mononuclear phagocytes (MNPs), including macrophages (MPs) and dendritic cells (DCs), are specifically equipped to detect a wide range of microbial signals and to capture, process, and present extracellular antigenic material to T lymphocytes. MNPs have been shown to contribute to the maintenance of intestinal immune tolerance through the induction or expansion of Tregs in the intestine. Despite their key role in microbial sensing and immune tolerance, the cellular and molecular cues that translate microbial signals into immunoregulatory MNPs in the intestine are not completely understood. ILC3 translate microbial cues into immunoregulatory signals in the intestine. Microbial cues sensed by intestinal MPs lead to IL-1β release. IL-1β engages IL-1R on ILC3, promoting Csf2 release. ILC3-derived Csf2 triggers DC and MP production of regulatory molecules (i.e., RA and IL-10), which, in turn, promotes the induction and expansion of regulatory T cells. Csf2-primed DCs and MPs promote Treg homeostasis locally and in mesenteric lymph nodes. ILC3 translate microbial cues into immunoregulatory signals in the intestine. Microbial cues sensed by intestinal MPs lead to IL-1β release. IL-1β engages IL-1R on ILC3, promoting Csf2 release. ILC3-derived Csf2 triggers DC and MP production of regulatory molecules (i.e., RA and IL-10), which, in turn, promotes the induction and expansion of regulatory T cells. Csf2-primed DCs and MPs promote Treg homeostasis locally and in mesenteric lymph nodes. Rationale The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), recently renamed Csf2, is a key determinant of myeloid lineage differentiation and is required for the optimal function of tissue MNPs. Recent results from our laboratory revealed that although Csf2-deficient mice have normal numbers of lymphoid tissue-resident DCs, they display significantly reduced numbers of steady-state nonlymphoid tissue-resident DCs in the small intestine, including the lamina propria CD103+CD11b+ DC subset implicated in the induction of lamina propria Tregs. These results prompted us to further explore the contribution of Csf2 to intestinal immune homeostasis in vivo. We used detailed profiling studies and functional immune assays of the MNP and lymphocyte compartment in the gut, as well as genetically engineered mice that lack Csf2 or the transducer Myd88 specifically in MNPs or lymphocytes, to explore the role of MNPs in the maintenance of immune homeostasis in the gut. Results Our results revealed a crosstalk between IL-1β–secreting MPs and Csf2-producing RORγt+ type 3 innate lymphoid cells (ILC3) in the intestinal mucosa. Microbiota-driven IL-1β production by MPs promoted the release of Csf2 by ILC3, which in turn controlled DCs and MPs to maintain colonic Treg homeostasis. Ablation of Csf2 reduced DC and MP numbers and impaired their ability to produce regulatory factors such as retinoic acid (RA) and IL-10, leading to disrupted Treg homeostasis in the large intestine. Conversely, administration of Csf2 cytokine increased Treg frequency in the gut. Most notably, cell type–specific ablation of IL-1 receptor (IL-1R)–dependent signaling in RORγt+ ILC3 abrogated oral tolerance to dietary antigens and compromised intestinal immune homeostasis in vivo. Although the reduction in Treg numbers was mostly observed in the large intestine, adoptive transfer studies in Csf2–/– mice revealed impaired Treg differentiation both in the small and large intestine, suggesting that Csf2-dependent MNP immunoregulatory functions control Treg induction in both tissues. Conclusion This study established the commensal-driven MNP-ILC-Csf2 axis as a key regulator of intestinal T cell homeostasis in the mouse intestine. Disturbance of this axis radically altered MNP effector function, resulting in impaired oral tolerance to dietary antigens. These results represent an important advance in our understanding of how commensal microbes can regulate host intestinal immunity and may inform the design of novel immunotherapies for patients with inflammatory intestinal diseases with impaired GM-CSF function. Gut Immune Tolerance With the constant assault of food antigens and its billions of resident microbes, the gut is an important site of immune tolerance. By studying specific intestinal immune cell populations in genetically modified mice, Mortha et al. (10.1126/science.1249288, published online 13 March; see the Perspective by Aychek and Jung) found that gut macrophages produce the cytokine interleukin-1 (IL-1) in response to signals derived from the microbiota. IL-1 acts on type 3 innate lymphoid cells in the intestine, which then produce the cytokine, colony-stimulating factor 2 (Csf2). Csf-2, in turn, induces myeloid cells (including dendritic cells and macrophages) to produce regulatory factors like retinoic acid and interleukin-10, which support the conversion and expansion of regulatory T cells, a population of cells known to be critical for maintaining immune tolerance in the gut. Myeloid cells, innate lymphoid cells, and the cytokines they secrete cooperate to maintain immune tolerance in the gut. [Also see Perspective by Aychek and Jung] The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.


Cell | 2014

Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility

Paul Andrew Muller; Balázs Koscsó; Gaurav Manohar Rajani; Korey Stevanovic; Marie Luise Berres; Daigo Hashimoto; Arthur Mortha; Marylene Leboeuf; Xiu-Min Li; Daniel Mucida; E. Richard Stanley; Stephanie Dahan; Kara Gross Margolis; Michael D. Gershon; Miriam Merad; Milena Bogunovic

Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:


Nature Immunology | 2014

Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells

Giuliana Magri; Michio Miyajima; Sabrina Bascones; Arthur Mortha; Irene Puga; Linda Cassis; Carolina M. Barra; Laura Comerma; Aleksey Chudnovskiy; Maurizio Gentile; David Lligé; Montserrat Cols; Sergi Serrano; Juan I. Aróstegui; Manel Juan; Jordi Yagüe; Miriam Merad; Sidonia Fagarasan; Andrea Cerutti

Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt+ ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell–independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell–activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system.


Nature | 2015

Neutrophil ageing is regulated by the microbiome

Dachuan Zhang; Grace Chen; Deepa Manwani; Arthur Mortha; Chunliang Xu; Jeremiah J. Faith; Robert D. Burk; Yuya Kunisaki; Jung Eun Jang; Christoph Scheiermann; Miriam Merad; Paul S. Frenette

Blood polymorphonuclear neutrophils provide immune protection against pathogens, but may also promote tissue injury in inflammatory diseases. Although neutrophils are generally considered to be a relatively homogeneous population, evidence for heterogeneity is emerging. Under steady-state conditions, neutrophil heterogeneity may arise from ageing and replenishment by newly released neutrophils from the bone marrow. Aged neutrophils upregulate CXCR4, a receptor allowing their clearance in the bone marrow, with feedback inhibition of neutrophil production via the IL-17/G-CSF axis, and rhythmic modulation of the haematopoietic stem-cell niche. The aged subset also expresses low levels of L-selectin. Previous studies have suggested that in vitro-aged neutrophils exhibit impaired migration and reduced pro-inflammatory properties. Here, using in vivo ageing analyses in mice, we show that neutrophil pro-inflammatory activity correlates positively with their ageing whilst in circulation. Aged neutrophils represent an overly active subset exhibiting enhanced αMβ2 integrin activation and neutrophil extracellular trap formation under inflammatory conditions. Neutrophil ageing is driven by the microbiota via Toll-like receptor and myeloid differentiation factor 88-mediated signalling pathways. Depletion of the microbiota significantly reduces the number of circulating aged neutrophils and dramatically improves the pathogenesis and inflammation-related organ damage in models of sickle-cell disease or endotoxin-induced septic shock. These results identify a role for the microbiota in regulating a disease-promoting neutrophil subset.


Nature Reviews Immunology | 2015

Regulation of macrophage development and function in peripheral tissues

Yonit Lavin; Arthur Mortha; Adeeb Rahman; Miriam Merad

Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity.


Immunologic Research | 2012

Mononuclear phagocyte diversity in the intestine

Milena Bogunovic; Arthur Mortha; Paul Andrew Muller; Miriam Merad

Present in all organs, mononuclear phagocytes consist of a heterogeneous population of hematopoietic cells whose main role is to ensure tissue homeostasis through their ability to scavenge cell debris, promote tissue repair and maintain tolerance to self-antigens while simultaneously inducing innate and adaptive immune responses against foreign antigens that breach the tissue. The intestinal mucosa is particularly exposed to foreign antigen, through constant exposure to high loads of commensal bacteria and dietary antigens as well as providing a site of entry for viral and bacterial pathogens. The molecular mechanisms that control the intestinal ability to distinguish between “innocuous” and “dangerous” antigens remains poorly understood although it is clear that mononuclear phagocytes play a key role in this process. This review highlights recent advances in our understanding of heterogeneous origin of the mononuclear phagocytes that inhabit the intestinal mucosa and discusses how developmental diversity allows for functional diversity to ensure intestinal integrity.


Nature Communications | 2018

Macrophages orchestrate breast cancer early dissemination and metastasis

Nina Linde; Maria Casanova-Acebes; Maria Soledad Sosa; Arthur Mortha; Adeeb Rahman; Eduardo F. Farias; Kathryn Harper; Ethan Tardio; Ivan Torres; Joan G. Jones; John Condeelis; Miriam Merad; Julio A. Aguirre-Ghiso

Cancer cell dissemination during very early stages of breast cancer proceeds through poorly understood mechanisms. Here we show, in a mouse model of HER2+ breast cancer, that a previously described sub-population of early-evolved cancer cells requires macrophages for early dissemination. Depletion of macrophages specifically during pre-malignant stages reduces early dissemination and also results in reduced metastatic burden at end stages of cancer progression. Mechanistically, we show that, in pre-malignant lesions, CCL2 produced by cancer cells and myeloid cells attracts CD206+/Tie2+ macrophages and induces Wnt-1 upregulation that in turn downregulates E-cadherin junctions in the HER2+ early cancer cells. We also observe macrophage-containing tumor microenvironments of metastasis structures in the pre-malignant lesions that can operate as portals for intravasation. These data support a causal role for macrophages in early dissemination that affects long-term metastasis development much later in cancer progression. A pilot analysis on human specimens revealed intra-epithelial macrophages and loss of E-cadherin junctions in ductal carcinoma in situ, supporting a potential clinical relevance.Early dissemination of cancer cells has been reported to occur in certain breast cancer models. Here the authors show that intra-epithelial macrophages in the early pre-cancer lesions drive early cancer cell dissemination through Wnt-1 secretion and that such events impact the later development of metastasis.


Nature Genetics | 2017

A functional genomics predictive network model identifies regulators of inflammatory bowel disease

Lauren A. Peters; Jacqueline Perrigoue; Arthur Mortha; Alina C. Iuga; Won Min Song; Eric M. Neiman; Sean R. Llewellyn; Antonio Di Narzo; Brian A. Kidd; Shannon Telesco; Yongzhong Zhao; Aleksandar Stojmirovic; Jocelyn Sendecki; Khader Shameer; Riccardo Miotto; Bojan Losic; Hardik Shah; Eunjee Lee; Minghui Wang; Jeremiah J. Faith; Andrew Kasarskis; Carrie Brodmerkel; Mark E. Curran; Anuk Das; Joshua R. Friedman; Yoshinori Fukui; Mary Beth Humphrey; Brian M. Iritani; Nicholas Sibinga; Teresa K. Tarrant

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Cancer immunology research | 2015

Requirement for Innate Immunity and CD90+ NK1.1− Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy

Marina Moskalenko; Michael Pan; Yichun Fu; Ellen H. de Moll; Daigo Hashimoto; Arthur Mortha; Marylene Leboeuf; Padmini Jayaraman; Sebastian Bernardo; Andrew G. Sikora; Jedd D. Wolchok; Nina Bhardwaj; Miriam Merad; Yvonne Saenger

Moskalenko, Pan, and colleagues show in a B16 melanoma model that tumor clearance from the combined regimen of cytotoxic doses of cyclophosphamide and an antibody targeting melanoma differentiation antigen tyrosine-related protein 1 requires Fcγ receptors and innate CD90+NK1.1− lymphocytes, not classical NK cells. We sought to define cellular immune mechanisms of synergy between tumor-antigen–targeted monoclonal antibodies and chemotherapy. Established B16 melanoma in mice was treated with cytotoxic doses of cyclophosphamide in combination with an antibody targeting tyrosinase-related protein 1 (αTRP1), a native melanoma differentiation antigen. We find that Fcγ receptors are required for efficacy, showing that antitumor activity of combination therapy is immune mediated. Rag1−/− mice deficient in adaptive immunity are able to clear tumors, and thus innate immunity is sufficient for efficacy. Furthermore, previously treated wild-type mice are not significantly protected against tumor reinduction, as compared with mice inoculated with irradiated B16 alone, consistent with a primarily innate immune mechanism of action of chemo-immunotherapy. In contrast, mice deficient in both classical natural killer (NK) lymphocytes and nonclassical innate lymphocytes (ILC) due to deletion of the IL2 receptor common gamma chain IL2γc−/−) are refractory to chemo-immunotherapy. Classical NK lymphocytes are not critical for treatment, as depletion of NK1.1+ cells does not impair antitumor effect. Depletion of CD90+NK1.1− lymphocytes, however, both diminishes therapeutic benefit and decreases accumulation of macrophages within the tumor. Tumor clearance during combination chemo-immunotherapy with monoclonal antibodies against native antigen is mediated by the innate immune system. We highlight a novel potential role for CD90+NK1.1− ILCs in chemo-immunotherapy. Cancer Immunol Res; 3(3); 296–304. ©2015 AACR.

Collaboration


Dive into the Arthur Mortha's collaboration.

Top Co-Authors

Avatar

Miriam Merad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jeremiah J. Faith

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marylene Leboeuf

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Sean R. Llewellyn

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jose C. Clemente

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Milena Bogunovic

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Adeeb Rahman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ari Grinspan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Eduardo J Contijoch

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge