Arthur W. H. Chan
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arthur W. H. Chan.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jason D. Surratt; Arthur W. H. Chan; Nathan C. Eddingsaas; Man Nin Chan; C. L. Loza; Alan J. Kwan; Scott Hersey; Paul O. Wennberg; John H. Seinfeld
Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = β-IEPOX + δ-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NOx conditions, respectively. Isoprene low-NOx SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NOx conditions, isoprene SOA formation occurs through oxidation of its second-generation product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NOx SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO2 and NO2, respectively) could be a substantial source of “missing urban SOA” not included in current atmospheric models.
Journal of Physical Chemistry A | 2008
Jason D. Surratt; Yadian Gómez-González; Arthur W. H. Chan; Reinhilde Vermeylen; Mona Shahgholi; Tadeusz E. Kleindienst; Edward O. Edney; John H. Offenberg; Michael Lewandowski; Mohammed Jaoui; Willy Maenhaut; M. Claeys; John H. Seinfeld
Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%.
Journal of Physical Chemistry A | 2010
Kathryn E. Kautzman; Jason D. Surratt; Man Nin Chan; Arthur W. H. Chan; Scott Hersey; P. S. Chhabra; Nathan F. Dalleska; Paul O. Wennberg; John H. Seinfeld
The current work focuses on the detailed evolution of the chemical composition of both the gas- and aerosol-phase constituents produced from the OH-initiated photooxidation of naphthalene under low- and high-NO(x) conditions. Under high-NO(x) conditions ring-opening products are the primary gas-phase products, suggesting that the mechanism involves dissociation of alkoxy radicals (RO) formed through an RO(2) + NO pathway, or a bicyclic peroxy mechanism. In contrast to the high-NO(x) chemistry, ring-retaining compounds appear to dominate the low-NO(x) gas-phase products owing to the RO(2) + HO(2) pathway. We are able to chemically characterize 53-68% of the secondary organic aerosol (SOA) mass. Atomic oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), and nitrogen-to-carbon (N/C) ratios measured in bulk samples by high-resolution electrospray ionization time-of-flight mass spectrometry (HR-ESI-TOFMS) are the same as the ratios observed with online high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS), suggesting that the chemical compositions and oxidation levels found in the chemically-characterized fraction of the particle phase are representative of the bulk aerosol. Oligomers, organosulfates (R-OSO(3)), and other high-molecular-weight (MW) products are not observed in either the low- or high-NO(x) SOA; however, in the presence of neutral ammonium sulfate seed aerosol, an organic sulfonic acid (R-SO(3)), characterized as hydroxybenzene sulfonic acid, is observed in naphthalene SOA produced under both high- and low-NO(x) conditions. Acidic compounds and organic peroxides are found to account for a large fraction of the chemically characterized high- and low-NO(x) SOA. We propose that the major gas- and aerosol-phase products observed are generated through the formation and further reaction of 2-formylcinnamaldehyde or a bicyclic peroxy intermediate. The chemical similarity between the laboratory SOA and ambient aerosol collected from Birmingham, Alabama (AL) and Pasadena, California (CA) confirm the importance of PAH oxidation in the formation of aerosol within the urban atmosphere.
Journal of Geophysical Research | 2007
Armin Sorooshian; Nga L. Ng; Arthur W. H. Chan; Graham Feingold; John H. Seinfeld
The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter participated in the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) mission during August–September 2006. A particle-into-liquid sampler (PILS) coupled to ion chromatography was used to characterize the water-soluble ion composition of aerosol and cloud droplet residual particles (976 5-min PM_(1.0) samples in total). Sulfate and ammonium dominated the water-soluble mass (NH_4+ + SO_4^(2−) = 84 ± 14%), while organic acids contributed 3.4 ± 3.7%. The average NH_4^+:SO_4^(2−) molar ratio was 1.77 ± 0.85. Particulate concentrations of organic acids increased with decreasing carbon number from C_9 to C_2. Organic acids were most abundant above cloud, presumably as a result of aqueous phase chemistry in cloud droplets, followed by subsequent droplet evaporation above cloud tops; the main product of this chemistry was oxalic acid. The evolution of organic acids with increasing altitude in cloud provides evidence for the multistep nature of oxalic acid production; predictions from a cloud parcel model are consistent with the observed oxalate:glyoxylate ratio as a function of altitude in GoMACCS cumuli. Suppressed organic acid formation was observed in clouds with relatively acidic droplets, as determined by high particulate nitrate concentrations (presumably high HNO_3 levels too) and lower liquid water content, as compared to other cloud fields probed. In the Houston Ship Channel region, an area with significant volatile organic compound emissions, oxalate, acetate, formate, benzoate, and pyruvate, in decreasing order, were the most abundant organic acids. Photo-oxidation of m-xylene in laboratory chamber experiments leads to a particulate organic acid product distribution consistent with the Ship Channel area observations.
Environmental Science & Technology | 2010
C. L. Loza; Arthur W. H. Chan; M. M. Galloway; Frank N. Keutsch; John H. Seinfeld
Laboratory chambers used to study atmospheric chemistry and aerosol formation are subject to wall loss of vapors and particles that must be accounted for in calculating aerosol yields. While particle wall loss in chambers is relatively well-understood and routinely accounted for, that of vapor is less so. Here we address experimental measurement and modeling of vapor losses in environmental chambers. We identify two compounds that exhibit wall loss: 2,3-epoxy-1,4-butanediol (BEPOX), an analog of an important isoprene oxidation product; and glyoxal, a common volatile organic compound oxidation product. Dilution experiments show that BEPOX wall loss is irreversible on short time scales but is reversible on long time scales, and glyoxal wall loss is reversible for all time scales. BEPOX exhibits minimal uptake onto clean chamber walls under dry conditions, with increasing rates of uptake over the life of an in-use chamber. By performing periodic BEPOX wall loss experiments, it is possible to assess quantitatively the aging of chamber walls.
Journal of Mass Spectrometry | 2011
Farhat Yasmeen; Rafal Szmigielski; Reinhilde Vermeylen; Yadian Gómez-González; Jason D. Surratt; Arthur W. H. Chan; John H. Seinfeld; Willy Maenhaut; M. Claeys
In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.
Journal of Physical Chemistry A | 2013
Christopher R. Ruehl; Theodora Nah; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Katheryn R. Kolesar; Christopher D. Cappa; Allen H. Goldstein; Kevin R. Wilson
Insights into the influence of molecular structure and thermodynamic phase on the chemical mechanisms of hydroxyl radical-initiated heterogeneous oxidation are obtained by identifying reaction products of submicrometer particles composed of either n-octacosane (C28H58, a linear alkane) or squalane (C30H62, a highly branched alkane) and OH. A common pattern is observed in the positional isomers of octacosanone and octacosanol, with functionalization enhanced toward the end of the molecule. This suggests that relatively large linear alkanes are structured in submicrometer particles such that their ends are oriented toward the surface. For squalane, positional isomers of first-generation ketones and alcohols also form in distinct patterns. Ketones are favored on carbons adjacent to tertiary carbons, while hydroxyl groups are primarily found on tertiary carbons but also tend to form toward the end of the molecule. Some first-generation products, viz., hydroxycarbonyls and diols, contain two oxygen atoms. These results suggest that alkoxy radicals are important intermediates and undergo both intramolecular (isomerization) and intermolecular (chain propagation) hydrogen abstraction reactions. Oxidation products with carbon number less than the parent alkanes are observed to a much greater extent for squalane than for n-octacosane oxidation and can be explained by the preferential cleavage of bonds involving tertiary carbons.
Environmental Science & Technology | 2015
David R. Worton; Haofei Zhang; Gabriel Isaacman-VanWertz; Arthur W. H. Chan; Kevin R. Wilson; Allen H. Goldstein
Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.
Environmental Science & Technology | 2016
Jianhuai Ye; Catherine A. Gordon; Arthur W. H. Chan
Atmospheric models of secondary organic aerosol (SOA) typically assume organic species form a well-mixed phase. As a result, partitioning of semivolatile oxidation products into the particle phase to form SOA is thought to be enhanced by preexisting organic particles. In this work, the physicochemical properties that govern such enhancement in SOA yield were examined. SOA yields from α-pinene ozonolysis were measured in the presence of a variety of organic seeds which were chosen based on polarity and phase state at room temperature. Yield enhancement was only observed with seeds of medium polarities (tetraethylene glycol and citric acid). Solid hexadecanol seed was observed to enhance SOA yields only in chamber experiments with longer mixing time scales, suggesting that the mixing process for SOA and hexadecanol may be kinetically limited at shorter time scales. Our observations indicate that, in addition to kinetic limitations, intermolecular interactions also play a significant role in determining SOA yields. Here we propose for the first time to use the Hansen solubility framework to determine aerosol miscibility and predict SOA yield enhancement. These results highlight that current models may overestimate SOA formation, and parametrization of intermolecular forces is needed for accurate predictions of SOA formation.
Atmospheric Chemistry and Physics | 2007
Nga L. Ng; Jesse H. Kroll; Arthur W. H. Chan; P. S. Chhabra; John H. Seinfeld