Artsiom Antanovich
Belarusian State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Artsiom Antanovich.
Physical Review Letters | 2016
Alexander W. Achtstein; Riccardo Scott; Sebastian Kickhöfel; Stefan T. Jagsch; Sotirios Christodoulou; Guillaume H. V. Bertrand; Anatol Prudnikau; Artsiom Antanovich; Mikhail Artemyev; Iwan Moreels; Andrei Schliwa; Ulrike Woggon
We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.
Nature Nanotechnology | 2017
Riccardo Scott; Jan Heckmann; Anatol Prudnikau; Artsiom Antanovich; Aleksandr Mikhailov; Nina Owschimikow; Mikhail Artemyev; Juan I. Climente; Ulrike Woggon; Nicolai B. Grosse; Alexander W. Achtstein
Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.
Langmuir | 2016
Aleksandra Fedosyuk; Aliaksandra Radchanka; Artsiom Antanovich; Anatol Prudnikau; Maksim V. Kvach; Vadim V. Shmanai; Mikhail Artemyev
We present a method for the determination of the average number of polymer molecules on the surface of A(II)B(VI) luminescent core-shell nanocrystals (CdSe/ZnS, ZnSe/ZnS quantum dots, and CdS/ZnS nanorods) encapsulated with amphiphilic polymer. Poly(maleic anhydride-alt-1-tetradecene) (PMAT) was quantitatively labeled with amino-derivative of fluorescein and the average amount of PMAT molecules per single nanocrystal was determined using optical absorption of the dye in the visible spectral range. The average amount of PMAT molecules grows linearly with the surface area of all studied nanocrystals. However, the surface density of the monomer units increases nonlinearly with the surface area, because of the increased competition between PMAT molecules for Zn-hexanethiol surface binding sites. The average value of zeta potential (ζ = -35 mV) was found to be independent of the size, shape, and chemical composition of nanocrystals at fixed buffer parameters (carbonate-bicarbonate buffer, pH 9.5 and 5 mM ionic strength). This finding is expected to be useful for the determination of the surface density of remaining carboxyl groups in PMAT-encapsulated nanocrystals.
Nano Letters | 2017
Jan Heckmann; Riccardo Scott; Anatol Prudnikau; Artsiom Antanovich; Nina Owschimikow; Mikhail Artemyev; Juan I. Climente; Ulrike Woggon; Nicolai B. Grosse; Alexander W. Achtstein
We show that two-photon absorption (TPA) is highly anisotropic in CdSe nanoplatelets, thus promoting them as a new class of directional two-photon absorbers with large cross sections. Comparing two-dimensional k-space spectroscopic measurements of the one-photon and two-photon excitation of an oriented monolayer of platelets, it is revealed that TPA into the continuum is a directional phenomenon. This is in contrast to one-photon absorption. The observed directional TPA is shown to be related to fundamental band anisotropies of zincblende CdSe and the ultrastrong anisotropic confinement. We recover the internal transition dipole distribution and find that this directionality arises from the intrinsic directionality of the underlying Bloch and envelope functions of the states involved. We note that the photoemission from the CdSe platelets is highly anisotropic following either one- or two-photon excitation. Given the directionality and high TPA cross-section of these platelets, they may, for example, find employment as efficient logic AND elements in integrated photonic devices, or directional photon converters.
IEEE Journal of Selected Topics in Quantum Electronics | 2017
Isaac Suárez; Rafael Munoz; Vladimir S. Chirvony; Juan Martínez-Pastor; Mikhail Artemyev; Anatol Prudnikau; Artsiom Antanovich; Alexander Mikhailov
In this work, fabrication of multilayers of colloidal CdSe/CdS/ZnCdS core/wings/shell nanoplatelets (NPls) on solid substrates by layer-by-layer deposition technology is successfully demonstrated for the first time. Integration of multilayers of nanoplatelets into polymeric waveguide resulted in strong dichroism in absorption and polarization effects in photoluminescence with preferable absorption and emission of TE (horizontal) mode that evidences about in-plane orientation of NPls relative to the planar waveguide. The propagation of the excitation and emission light along the waveguide was thoroughly investigated both theoretically and experimentally for different number of NPl layers.
Zeitschrift für Physikalische Chemie | 2018
Artsiom Antanovich; Anatol Prudnikau; Mikhail Artemyev
Abstract Atomically flat colloidal nanoplatelets with strong one-dimensional confinement represent the most recently discovered type of quantum-confined cadmium chalcogenide nanocrystals. In almost a decade a great progress has been achieved in the colloidal synthesis of nanoplatelets and understanding of their basic optical and electronic properties. However, up until recently methods of their controlled spatial orientation were quite scarce, what in turn hindered obtaining reliable information on their anisotropic structural and optical properties arising from their shape. In this paper we provide a mini-review of recent advances in this field of study.
ACS Nano | 2018
Alexander W. Achtstein; Oliver Marquardt; Riccardo Scott; Mohamed R. Ibrahim; Thomas Riedl; Anatol V. Prudnikau; Artsiom Antanovich; Nina Owschimikow; Jörg K. N. Lindner; Mikhail Artemyev; Ulrike Woggon
We investigate the impact of shell growth on the carrier dynamics and exciton-phonon coupling in CdSe-CdS core-shell nanoplatelets with varying shell thickness. We observe that the recombination dynamics can be prolonged by more than one order of magnitude, and analyze the results in a global rate model as well as with simulations including strain and excitonic effects. We reveal that type I band alignment in the hetero platelets is maintained at least up to three monolayers of CdS, resulting in approximately constant radiative rates. Hence, observed changes of decay dynamics are not the result of an increasingly different electron and hole exciton wave function delocalization as often assumed, but an increasingly better passivation of nonradiative surface defects by the shell. Based on a global analysis of time-resolved and time-integrated data, we recover and model the temperature dependent quantum yield of these nanostructures and show that CdS shell growth leads to a strong enhancement of the photoluminescence quantum yield. Our results explain, for example, the very high lasing gain observed in CdSe-CdS nanoplatelets due to the type I band alignment that also makes them interesting as solar energy concentrators. Further, we reveal that the exciton-LO-phonon coupling is strongly tunable by the CdS shell thickness, enabling emission line width and coherence length control.
european quantum electronics conference | 2017
Alexander W. Achtstein; Riccardo Scott; Anatol Prudnikau; Artsiom Antanovich; Mikhail Artemyev; Ulrike Woggon
We study [1] the application potential of CdSe nanoplatelets (NPLs) [2], a model system for colloidal 2D materials, as field-controlled emitters and their properties. We show that their luminescence emission can be modulated by 28% upon application of electrical fields up to 175 kV/cm. This is a very high modulation depth for field-controlled nanoemitters. Based on our experimental results we estimate the exciton binding energy in 5.5 monolayer CdSe nanoplatelets to be Eb = 170 meV. Therefore CdSe NPLs exhibit highly robust excitons being stable even at room temperature. This allows to tune the emission and recombination dynamics efficiently by external electric fields.
Archive | 2016
Artsiom Antanovich; Anatol Prudnikau; Mikhail Artemyev
In this chapter we overview recent achievements in the synthesis and investigation of optical properties of the new type of quantum-sized semiconductor nanocrystals – 2D nanoplatelets. Thin, atomically flat AIIBVI nanoplatelets prepared by colloidal chemistry routes are good model objects for studying optical properties of 2D semiconductor structures. Due to their discrete thickness, nanoplatelets exhibit spectrally narrow excitonic optical transitions in absorption and photoluminescence. Large lateral size of semiconductor nanoplatelets results in very efficient light absorption with the molar absorption coefficient an order of magnitude greater than that of 0D quantum dots and 1D nanorods. Sharp excitonic absorption bands of CdSe nanoplatelets allow observation of large electro-optical Quantum Confined Stark effect which is much stronger than in the corresponding nanorods, or quantum dots. Besides binary core CdSe, CdS, CdTe nanoplatelets, more complex CdSe/CdS core-shell and unique core-wings CdSe-CdS, CdSe-CdTe and CdTe-CdSe heteronanoplatelets with type I and type II optical transitions and bright photoluminescence can be synthesized. This expands the field of potential practical applications of nanoplatelets as efficient light convertors and fluorescent markers even further.
Journal of Physical Chemistry C | 2015
Alexander W. Achtstein; Artsiom Antanovich; Anatol Prudnikau; Riccardo Scott; Ulrike Woggon; Mikhail Artemyev