Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Artur Cavaco-Paulo is active.

Publication


Featured researches published by Artur Cavaco-Paulo.


Applied and Environmental Microbiology | 2000

Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta

Elias Abadulla; Tzanko Tzanov; Silgia A. Costa; Karl-Heinz Robra; Artur Cavaco-Paulo; Georg M. Gübitz

ABSTRACT Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of theT. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes.


Biomacromolecules | 2008

Biodegradable Materials Based on Silk Fibroin and Keratin

Andreia Vasconcelos; Giuliano Freddi; Artur Cavaco-Paulo

Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles.


Carbohydrate Polymers | 1998

Mechanism of cellulase action in textile processes

Artur Cavaco-Paulo

The effects on fabric caused by cellulase enzymes always result from a process in which strong mechanical action affecting the fabric is provided. This paper discusses the interaction between cellulase activities and mechanical agitation during textile processes. Possible mechanisms are suggested for depilling and ageing effects accounting for the presence of mechanical factors. The paper includes a review of the mechanisms of indigo backstaining during cellulase washing.


Applied and Environmental Microbiology | 2004

A New Alkali-Thermostable Azoreductase from Bacillus sp. Strain SF

Jürgen Maier; Andreas Kandelbauer; Angelika Erlacher; Artur Cavaco-Paulo; Georg M. Gübitz

ABSTRACT A screening for dye-decolorizing alkali-thermophilic microorganisms resulted in a Bacillus sp. strain isolated out of the wastewater drain of a textile finishing company. An NADH-dependent azoreductase of this strain, Bacillus sp. strain SF, was found to be responsible for the decolorization of azo dyes. This enzyme was purified by a combination of ammonium sulfate precipitation and anion-exchange and affinity chromatography and had a molecular mass of 61.6 kDa and an isoelectric point at pH 5.3. The pH optimum of the azoreductase depended on the substrate and was within the range of pHs 8 to 9, while the temperature maximum was reached at 80°C. Decolorization only took place in the absence of oxygen and was enhanced by FAD, which was not consumed during the reaction. A 26% similarity of this azoreductase to chaperonin Cpn60 from a Bacillus sp. was found by peptide mass mapping experiments. Substrate specificities of the azoreductase were studied by using synthesized model substrates based on di-sodium-(R)-benzyl-azo-2,7-dihydroxy-3,6-disulfonyl-naphthaline. Those dyes with NO2 substituents, especially in the ortho position, were degraded fastest, while analogues with a methyl substitution showed the lowest degradation rates.


Journal of Biotechnology | 2001

Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii

Rui Campos; Andreas Kandelbauer; Karl-Heinz Robra; Artur Cavaco-Paulo; Georg M. Gübitz

The degradation of the textile dye indigo with purified laccases from the fungi Trametes hirsuta (THL1 and THL2) and Sclerotium rolfsii (SRL1) was studied. All laccases were able to oxidize indigo yielding isatin (indole-2,3-dione), which was further decomposed to anthranilic acid (2-aminobenzoic acid). Based on the oxygen consumption rate of the laccases during indigo degradation, a potential mechanism for the oxidation of indigo involving the step-wise abstraction of four electrons from indigo by the enzyme was suggested. Comparing the effect of the known redox-mediators acetosyringone, 1-hydroxybenzotriazole (HOBT) and 4-hydroxybenzenesulfonic acid (PHBS) on laccase-catalyzed degradation of indigo, we found a maximum of about 30% increase in the oxidation rate of indigo with SRL1 and acetosyringone. The particle size of indigo agglomerates after laccase treatment was influenced by the origin of the laccase preparation and by the incubation time. Diameter distributions were found to have one maximum and compared to the indigo particle size distribution of the control, for all laccases, the indigo agglomerates seemed to have shifted to smaller diameters. Bleaching of fabrics by the laccases (based on K/S values) correlated with the release of indigo degradation products.


Enzyme and Microbial Technology | 2001

Bio-preparation of cotton fabrics

Tzanko Tzanov; Margarita Calafell; Georg M. Guebitz; Artur Cavaco-Paulo

This study attempted to introduce the bio-processes in the conventional scouring and bleaching preparation of cotton. The scouring with two types of pectinases, acting under acidic and alkaline conditions respectively, was as efficient as the chemical process in terms of obtained adequate water absorbency of the fabrics. The necessity of surfactants application in scouring was outlined. Bleaching of the fabrics was performed with hydrogen peroxide, which was enzymatically produced by glucose oxidase during oxidation of glucose. The aeration plays an important role in the enhancement of the enzyme reaction, so that the quantity of generated peroxide is sufficient to overcome the stabilizing effect of the glucose and protein in the subsequent bleaching. A closed-loop process reusing starch containing desizing baths in a single step scouring/bleaching operation with enzyme-generated peroxide was performed.


Applied and Environmental Microbiology | 2005

Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions

Andrea Zille; Barbara Górnacka; Astrid Rehorek; Artur Cavaco-Paulo

ABSTRACT Trametes villosa laccase was used for direct azo dye degradation, and the reaction products that accumulated after 72 h of incubation were analyzed. Liquid chromatography-mass spectrometry (LC-MS) analysis showed the formation of phenolic compounds during the dye oxidation process as well as a large amount of polymerized products that retain azo group integrity. The amino-phenol reactions were also investigated by 13C-nuclear magnetic resonance and LC-MS analysis, and the polymerization character of laccase was shown. This study highlights the fact that laccases polymerize the reaction products obtained during long-term batch decolorization processes with azo dyes. These polymerized products provide unacceptable color levels in effluents, limiting the application of laccases as bioremediation agents.


Applied and Environmental Microbiology | 2004

Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain

Patrícia A. Ramalho; M. Helena Cardoso; Artur Cavaco-Paulo; M.Teresa Ramalho

ABSTRACT Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.


Biocatalysis and Biotransformation | 2008

Application of enzymes for textile fibres processing

Rita Alexandra Manso Araújo; Margarida Casal; Artur Cavaco-Paulo

This review highlights the use of enzymes in the textile industry, covering both current commercial processes and research in this field. Amylases have been used for desizing since the middle of the last century. Enzymes used in detergent formulations have also been successfully used over the past 40 years. The application of cellulases for denim finishing and laccases for decolourization of textile effluents and textile bleaching are the most recent commercial advances. New developments rely on the modification of natural and synthetic fibres. Advances in enzymology, molecular biology and screening techniques provide possibilities for the development of new enzyme-based processes for a more environmentally friendly approach in the textile industry.


Acta Biomaterialia | 2012

Novel silk fibroin/elastin wound dressings

Andreia Vasconcelos; Andreia C. Gomes; Artur Cavaco-Paulo

Silk fibroin (SF) and elastin (EL) scaffolds were successfully produced for the first time for the treatment of burn wounds. The self-assembly properties of SF, together with the excellent chemical and mechanical stability and biocompatibility, were combined with elastin protein to produce scaffolds with the ability to mimic the extracellular matrix (ECM). Porous scaffolds were obtained by lyophilization and were further crosslinked with genipin (GE). Genipin crosslinking induces the conformational transition from random coil to β-sheet of SF chains, yielding scaffolds with smaller pore size and reduced swelling ratios, degradation and release rates. All results indicated that the composition of the scaffolds had a significant effect on their physical properties, and that can easily be tuned to obtain scaffolds suitable for biological applications. Wound healing was assessed through the use of human full-thickness skin equivalents (EpidermFT). Standardized burn wounds were induced by a cautery and the best re-epithelialization and the fastest wound closure was obtained in wounds treated with 50SF scaffolds; these contain the highest amount of elastin after 6 days of healing in comparison with other dressings and controls. The cytocompatibility demonstrated with human skin fibroblasts together with the healing improvement make these SF/EL scaffolds suitable for wound dressing applications.

Collaboration


Dive into the Artur Cavaco-Paulo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg M. Gübitz

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tzanko Tzanov

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge