Artur S. d'Avila Garcez
City University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Artur S. d'Avila Garcez.
Applied Intelligence | 1999
Artur S. d'Avila Garcez; Gerson Zaverucha
This paper presents the Connectionist Inductive Learning and Logic Programming System (C-IL2P). C-IL2P is a new massively parallel computational model based on a feedforward Artificial Neural Network that integrates inductive learning from examples and background knowledge, with deductive learning from Logic Programming. Starting with the background knowledge represented by a propositional logic program, a translation algorithm is applied generating a neural network that can be trained with examples. The results obtained with this refined network can be explained by extracting a revised logic program from it. Moreover, the neural network computes the stable model of the logic program inserted in it as background knowledge, or learned with the examples, thus functioning as a parallel system for Logic Programming. We have successfully applied C-IL2P to two real-world problems of computational biology, specifically DNA sequence analyses. Comparisons with the results obtained by some of the main neural, symbolic, and hybrid inductive learning systems, using the same domain knowledge, show the effectiveness of C-IL2P.
Studia Logica | 2009
Dov M. Gabbay; Artur S. d'Avila Garcez
This paper studies methodologically robust options for giving logical contents to nodes in abstract argumentation networks. It defines a variety of notions of attack in terms of the logical contents of the nodes in a network. General properties of logics are refined both in the object level and in the metalevel to suit the needs of the application. The network-based system improves upon some of the attempts in the literature to define attacks in terms of defeasible proofs, the so-called rule-based systems. We also provide a number of examples and consider a rigorous case study, which indicate that our system does not suffer from anomalies. We define consequence relations based on a notion of defeat, consider rationality postulates, and prove that one such consequence relation is consistent.
Theoretical Computer Science | 2007
Artur S. d'Avila Garcez; Luís C. Lamb; Dov M. Gabbay
Modal logics are amongst the most successful applied logical systems. Neural networks were proved to be effective learning systems. In this paper, we propose to combine the strengths of modal logics and neural networks by introducing Connectionist Modal Logics (CML). CML belongs to the domain of neural-symbolic integration, which concerns the application of problem-specific symbolic knowledge within the neurocomputing paradigm. In CML, one may represent, reason or learn modal logics using a neural network. This is achieved by a Modalities Algorithm that translates modal logic programs into neural network ensembles. We show that the translation is sound, i.e. the network ensemble computes a fixed-point meaning of the original modal program, acting as a distributed computational model for modal logic. We also show that the fixed-point computation terminates whenever the modal program is well-behaved. Finally, we validate CML as a computational model for integrated knowledge representation and learning by applying it to a well-known testbed for distributed knowledge representation. This paves the way for a range of applications on integrated knowledge representation and learning, from practical reasoning to evolving multi-agent systems.
Journal of Logic and Computation | 2005
Artur S. d'Avila Garcez; Dov M. Gabbay; Luís C. Lamb
While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments.
Neural Computation | 2006
Artur S. d'Avila Garcez; Luís C. Lamb
The importance of the efforts to bridge the gap between the connectionist and symbolic paradigms of artificial intelligence has been widely recognized. The merging of theory (background knowledge) and data learning (learning from examples) into neural-symbolic systems has indicated that such a learning system is more effective than purely symbolic or purely connectionist systems. Until recently, however, neural-symbolic systems were not able to fully represent, reason, and learn expressive languages other than classical propositional and fragments of first-order logic. In this article, we show that nonclassical logics, in particular propositional temporal logic and combinations of temporal and epistemic (modal) reasoning, can be effectively computed by artificial neural networks. We present the language of a connectionist temporal logic of knowledge (CTLK). We then present a temporal algorithm that translates CTLK theories into ensembles of neural networks and prove that the translation is correct. Finally, we apply CTLK to the muddy children puzzle, which has been widely used as a testbed for distributed knowledge representation. We provide a complete solution to the puzzle with the use of simple neural networks, capable of reasoning about knowledge evolution in time and of knowledge acquisition through learning.
International Journal on Artificial Intelligence Tools | 2004
Artur S. d'Avila Garcez; Luís C. Lamb; Krysia Broda; Dov M. Gabbay
Neural-Symbolic Systems concern the integration of the symbolic and connectionist paradigms of Artificial Intelligence. Distributed knowledge representation is traditionally seen under a symbolic perspective. In this paper, we show how neural networks can represent distributed symbolic knowledge, acting as multi-agent systems with learning capability (a key feature of neural networks). We apply the framework of Connectionist Modal Logics to well-known testbeds for distributed knowledge representation formalisms, namely the muddy children and the wise men puzzles. Finally, we sketch a full solution to these problems by extending our approach to deal with knowledge evolution over time.
IEEE Transactions on Neural Networks | 2011
Rafael V. Borges; Artur S. d'Avila Garcez; Luís C. Lamb
The effective integration of knowledge representation, reasoning, and learning in a robust computational model is one of the key challenges of computer science and artificial intelligence. In particular, temporal knowledge and models have been fundamental in describing the behavior of computational systems. However, knowledge acquisition of correct descriptions of a systems desired behavior is a complex task. In this paper, we present a novel neural-computation model capable of representing and learning temporal knowledge in recurrent networks. The model works in an integrated fashion. It enables the effective representation of temporal knowledge, the adaptation of temporal models given a set of desirable system properties, and effective learning from examples, which in turn can lead to temporal knowledge extraction from the corresponding trained networks. The model is sound from a theoretical standpoint, but it has also been tested on a case study in the area of model verification and adaptation. The results contained in this paper indicate that model verification and learning can be integrated within the neural computation paradigm, contributing to the development of predictive temporal knowledge-based systems and offering interpretable results that allow system researchers and engineers to improve their models and specifications. The model has been implemented and is available as part of a neural-symbolic computational toolkit.
international conference on acoustics, speech, and signal processing | 2015
Siddharth Sigtia; Emmanouil Benetos; Nicolas Boulanger-Lewandowski; Tillman Weyde; Artur S. d'Avila Garcez; Simon Dixon
We investigate the problem of incorporating higher-level symbolic score-like information into Automatic Music Transcription (AMT) systems to improve their performance. We use recurrent neural networks (RNNs) and their variants as music language models (MLMs) and present a generative architecture for combining these models with predictions from a frame level acoustic classifier. We also compare different neural network architectures for acoustic modeling. The proposed model computes a distribution over possible output sequences given the acoustic input signal and we present an algorithm for performing a global search for good candidate transcriptions. The performance of the proposed model is evaluated on piano music from the MAPS dataset and we observe that the proposed model consistently outperforms existing transcription methods.
Theoretical Computer Science | 2006
Artur S. d'Avila Garcez; Luís C. Lamb; Dov M. Gabbay
The construction of computational models with provision for effective learning and added reasoning is a fundamental problem in computer science. In this paper, we present a new computational model for integrated reasoning and learning that combines intuitionistic reasoning and neural networks. We use ensembles of neural networks to represent intuitionistic theories, and show that for each intuitionistic theory and intuitionistic modal theory there exists a corresponding neural network ensemble that computes a fixed-point semantics of the theory. This provides a massively parallel model for intuitionistic reasoning. In our model, the neural networks can be trained from examples to adapt to new situations using standard neural learning algorithms, thus providing a unifying foundation for intuitionistic reasoning, knowledge representation, and learning.
international symposium on neural networks | 2010
Nick F. Ryman-Tubb; Artur S. d'Avila Garcez
This paper presents a novel approach to knowledge extraction from large-scale datasets using a neural network when applied to the real-world problem of payment card fraud detection. Fraud is a serious and long term threat to a peaceful and democratic society. We present SOAR (Sparse Oracle-based Adaptive Rule) extraction, a practical approach to process large datasets and extract key generalizing rules that are comprehensible using a trained neural network as an oracle to locate key decision boundaries. Experimental results indicate a high level of rule comprehensibility with an acceptable level of accuracy can be achieved. The SOAR extraction outperformed the best decision tree induction method and produced over 10 times fewer rules aiding comprehensibility. Moreover, the extracted rules discovered fraud facts of key interest to industry fraud analysts.