Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arturo Galvani is active.

Publication


Featured researches published by Arturo Galvani.


Nature Chemical Biology | 2013

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death

Paola Magnaghi; Roberto D'alessio; Barbara Valsasina; Nilla Avanzi; Simona Rizzi; Daniela Asa; Fabio Gasparri; Ulisse Cucchi; Christian Orrenius; Paolo Polucci; Dario Ballinari; Claudia Perrera; Antonella Leone; Giovanni Cervi; Elena Casale; Yang Xiao; Chihunt Wong; Daniel J. Anderson; Arturo Galvani; Daniele Donati; Thomas O'Brien; Peter K. Jackson; Antonella Isacchi

VCP (also known as p97 or Cdc48p in yeast) is an AAA(+) ATPase regulating endoplasmic reticulum-associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.


Cancer Research | 2010

Targeting the Mitotic Checkpoint for Cancer Therapy with Nms-P715, an Inhibitor of Mps1 Kinase.

Riccardo Colombo; Marina Caldarelli; Milena Mennecozzi; Maria Laura Giorgini; Francesco Sola; Paolo Cappella; Claudia Perrera; Stefania Re Depaolini; Luisa Rusconi; Ulisse Cucchi; Nilla Avanzi; Jay Aaron Bertrand; Roberto Bossi; Enrico Pesenti; Arturo Galvani; Antonella Isacchi; Francesco Colotta; Daniele Donati; Jurgen Moll

MPS1 kinase is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. It has been found aberrantly overexpressed in a wide range of human tumors and is necessary for tumoral cell proliferation. Here we report the identification and characterization of NMS-P715, a selective and orally bioavailable MPS1 small-molecule inhibitor, which selectively reduces cancer cell proliferation, leaving normal cells almost unaffected. NMS-P715 accelerates mitosis and affects kinetochore components localization causing massive aneuploidy and cell death in a variety of tumoral cell lines and inhibits tumor growth in preclinical cancer models. Inhibiting the SAC could represent a promising new approach to selectively target cancer cells.


Clinical Cancer Research | 2007

Bortezomib inhibits nuclear factor-kappaB dependent survival and has potent in vivo activity in mesothelioma.

Andrea Sartore-Bianchi; Fabio Gasparri; Arturo Galvani; Linda Nici; James W. Darnowski; Dario Barbone; Dean A. Fennell; Giovanni Gaudino; Camillo Porta; Luciano Mutti

Purpose: Purpose of this study has been the assessment of nuclear factor-κB (NF-κB) as a survival factor in human mesothelial cells (HMC), transformed HMC and malignant mesothelioma (MMe) cells. We aimed at verifying whether the proteasome inhibitor Bortezomib could abrogate NF-κB activity in MMe cells, leading to tumor cell death and may be established as a novel treatment for this aggressive neoplasm. Experimental Design: In HMC and MMe cells, NF-κB nuclear translocation and DNA binding were studied by electrophoretic mobility shift assay, following treatment with tumor necrosis factor-α (TNF-α). The IKK inhibitor Bay11-7082 was also tested to evaluate its effects on HMC, transformed HMC, and MMe cell viability upon exposure to asbestos fibers. Following Bortezomib treatment, cytotoxicity of MMe cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, whereas apoptosis and cell-cycle blockade were investigated by high-content analysis. Bortezomib was also given to mice bearing i.p. xenografts of MMe cells, and its effects on tumor growth were evaluated. Results: Here, we show that NF-κB activity is a constitutive survival factor in transformed HMC, MMe cells, and acts as a survival factor in HMC exposed to asbestos fibers. Bortezomib inhibits NF-κB activity in MMe cells and induces cell cycle blockade and apoptosis in vitro as well as tumor growth inhibition in vivo. Conclusions: Inhibition of NF-κB constitutive activation in MMe cells by Bortezomib resulted in in vitro cytotoxicity along with apoptosis and in vivo tumor regression. Our results support the use of Bortezomib in the treatment of MMe and has led to a phase II clinical trial currently enrolling in Europe.


Bioorganic & Medicinal Chemistry Letters | 2009

Optimization of pyrazole inhibitors of Coactivator Associated Arginine Methyltransferase 1 (CARM1)

Tram Huynh; Zhong Chen; Suhong Pang; Jieping Geng; Tiziano Bandiera; Simona Bindi; Paola Vianello; Fulvia Roletto; Sandrine Thieffine; Arturo Galvani; Wayne Vaccaro; Michael A. Poss; George L. Trainor; Matthew V. Lorenzi; Marco M. Gottardis; Lata Jayaraman; Ashok V. Purandare

Design, synthesis, and SAR development led to the identification of the potent, novel, and selective pyrazole based inhibitor (7f) of Coactivator Associated Arginine Methyltransferase (CARM1).


Journal of Biomolecular Screening | 2006

Multiparametric Cell Cycle Analysis by Automated Microscopy

Fabio Gasparri; Paolo Cappella; Arturo Galvani

Cell cycle analysis using flow cytometry (FC) to measure cellular DNA content is a common procedure in drug mechanism of action studies. Although this technique lends itself readily to cell lines that grow in suspension, adherent cell cultures must be resuspended in a cumbersome and potentially invasive procedure that normally involves trypsinization and mechanical agitation of monolayer cultures. High-content analysis (HCA), an automated microscopy-based technology, is well suited to analysis of monolayer cell cultures but provides intrinsically less accurate determination of cellular DNA content than does FC and thus is not the method of choice for cell cycle analysis. Using Cellomics’s ArrayScan™ reader, the authors have developed a 4-color multiparametric HCA approach for cell cycle analysis of adherent cells based on detection of DNA content (4,6-diamidino-2-phenylindole [DAPI] fluorescence), together with the known cell cycle markers bromo-2-deoxyuridine (BrdU) incorporation, cyclin B1 expression, and histone H3 (Ser28) phosphorylation within a single cell population. Considering all 4 markers together, a reliable and accurate quantification of cell cycle phases was possible, as compared with flow cytometric analysis. Using this assay, specific cell cycle blocks induced by treatment with thymidine, paclitaxel, or nocodazole as test drugs were easily monitored in adherent cultures of U-2 OS osteosarcoma cells.


Molecular Oncology | 2014

The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition.

Elena Ardini; Roberta Bosotti; Andrea Lombardi Borgia; Cristina De Ponti; Alessio Somaschini; Rosaria Cammarota; Nadia Amboldi; Laura Raddrizzani; Andrea Milani; Paola Magnaghi; Dario Ballinari; Daniele Casero; Fabio Gasparri; Patrizia Banfi; Nilla Avanzi; Maria Beatrice Saccardo; Rachele Alzani; Tiziano Bandiera; Eduard Felder; Daniele Donati; Enrico Pesenti; Andrea Sartore-Bianchi; Marcello Gambacorta; Marco A. Pierotti; Salvatore Siena; Silvio Veronese; Arturo Galvani; Antonella Isacchi

The NTRK1 gene encodes Tropomyosin‐related kinase A (TRKA), the high‐affinity Nerve Growth Factor Receptor. NTRK1 was originally isolated from a colorectal carcinoma (CRC) sample as component of a somatic rearrangement (TPM3‐NTRK1) resulting in expression of the oncogenic chimeric protein TPM3‐TRKA, but there has been no subsequent report regarding the relevance of this oncogene in CRC. The KM12 human CRC cell line expresses the chimeric TPM3‐TRKA protein and is hypersensitive to TRKA kinase inhibition. We report the detailed characterization of the TPM3‐NTRK1 genomic rearrangement in KM12 cells and through a cellular screening approach, the identification of NMS‐P626, a novel highly potent and selective TRKA inhibitor. NMS‐P626 suppressed TPM3‐TRKA phosphorylation and downstream signaling in KM12 cells and showed remarkable antitumor activity in mice bearing KM12 tumors.


Journal of Medicinal Chemistry | 2013

Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships.

Paolo Polucci; Paola Magnaghi; Mauro Angiolini; Daniela Asa; Nilla Avanzi; Alessandra Badari; Jay Aaron Bertrand; Elena Casale; Silvia Cauteruccio; Alessandra Cirla; Arturo Galvani; Peter K. Jackson; Yichin Liu; Steven Magnuson; Beatrice Malgesini; Stefano Nuvoloni; Christian Orrenius; Federico Riccardi Sirtori; Laura Riceputi; Simona Rizzi; Beatrice Trucchi; Tom O’Brien; Antonella Isacchi; Daniele Donati; Roberto D’Alessio

Valosine containing protein (VCP), also known as p97, is a member of AAA ATPase family that is involved in several biological processes and plays a central role in the ubiquitin-mediated degradation of misfolded proteins. VCP is an ubiquitously expressed, highly abundant protein and has been found overexpressed in many tumor types, sometimes associated with poor prognosis. In this respect, VCP has recently received a great deal of attention as a potential new target for cancer therapy. In this paper, the discovery and structure-activity relationships of alkylsulfanyl-1,2,4-triazoles, a new class of potent, allosteric VCP inhibitors, are described. Medicinal chemistry manipulation of compound 1, identified via HTS, led to the discovery of potent and selective inhibitors with submicromolar activity in cells and clear mechanism of action at consistent doses. This represents a first step toward a new class of potential anticancer agents.


Molecular Cancer Therapeutics | 2012

NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies.

Barbara Valsasina; Italo Beria; Cristina Alli; Rachele Alzani; Nilla Avanzi; Dario Ballinari; Paolo Cappella; Michele Caruso; Alessia Casolaro; Antonella Ciavolella; Ulisse Cucchi; Anna De Ponti; Eduard R. Felder; Francesco Fiorentini; Arturo Galvani; Laura Gianellini; Maria Laura Giorgini; Antonella Isacchi; Jacqueline Lansen; Enrico Pesenti; Simona Rizzi; Maurizio Rocchetti; Francesco Sola; Jurgen Moll

Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase considered to be the master player of cell-cycle regulation during mitosis. It is indeed involved in centrosome maturation, bipolar spindle formation, chromosome separation, and cytokinesis. PLK1 is overexpressed in a variety of human tumors and its overexpression often correlates with poor prognosis. Although five different PLKs are described in humans, depletion or inhibition of kinase activity of PLK1 is sufficient to induce cell-cycle arrest and apoptosis in cancer cell lines and in xenograft tumor models. NMS-P937 is a novel, orally available PLK1-specific inhibitor. The compound shows high potency in proliferation assays having low nanomolar activity on a large number of cell lines, both from solid and hematologic tumors. NMS-P937 potently causes a mitotic cell-cycle arrest followed by apoptosis in cancer cell lines and inhibits xenograft tumor growth with clear PLK1-related mechanism of action at well-tolerated doses in mice after oral administration. In addition, NMS-P937 shows potential for combination in clinical settings with approved cytotoxic drugs, causing tumor regression in HT29 human colon adenocarcinoma xenografts upon combination with irinotecan and prolonged survival of animals in a disseminated model of acute myelogenous leukemia in combination with cytarabine. NMS-P937, with its favorable pharmacologic parameters, good oral bioavailability in rodent and nonrodent species, and proven antitumor activity in different preclinical models using a variety of dosing regimens, potentially provides a high degree of flexibility in dosing schedules and warrants investigation in clinical settings. Mol Cancer Ther; 11(4); 1006–16. ©2012 AACR.


Molecular Cancer Therapeutics | 2016

Entrectinib, a Pan-TRK, ROS1 and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications

Elena Ardini; Maria Menichincheri; Patrizia Banfi; Roberta Bosotti; Cristina De Ponti; Romana Pulci; Dario Ballinari; Marina Ciomei; Gemma Texido; Anna Degrassi; Nilla Avanzi; Nadia Amboldi; Maria Beatrice Saccardo; Daniele Casero; Paolo Orsini; Tiziano Bandiera; Luca Mologni; David Anderson; Ge Wei; Jason B. Harris; Jean-Michel Vernier; Gang Li; Eduard Felder; Daniele Donati; Antonella Isacchi; Enrico Pesenti; Paola Magnaghi; Arturo Galvani

Activated ALK and ROS1 tyrosine kinases, resulting from chromosomal rearrangements, occur in a subset of non–small cell lung cancers (NSCLC) as well as other tumor types and their oncogenic relevance as actionable targets has been demonstrated by the efficacy of selective kinase inhibitors such as crizotinib, ceritinib, and alectinib. More recently, low-frequency rearrangements of TRK kinases have been described in NSCLC, colorectal carcinoma, glioblastoma, and Spitzoid melanoma. Entrectinib, whose discovery and preclinical characterization are reported herein, is a novel, potent inhibitor of ALK, ROS1, and, importantly, of TRK family kinases, which shows promise for therapy of tumors bearing oncogenic forms of these proteins. Proliferation profiling against over 200 human tumor cell lines revealed that entrectinib is exquisitely potent in vitro against lines that are dependent on the drugs pharmacologic targets. Oral administration of entrectinib to tumor-bearing mice induced regression in relevant human xenograft tumors, including the TRKA-dependent colorectal carcinoma KM12, ROS1-driven tumors, and several ALK-dependent models of different tissue origins, including a model of brain-localized lung cancer metastasis. Entrectinib is currently showing great promise in phase I/II clinical trials, including the first documented objective responses to a TRK inhibitor in colorectal carcinoma and in NSCLC. The drug is, thus, potentially suited to the therapy of several molecularly defined cancer settings, especially that of TRK-dependent tumors, for which no approved drugs are currently available. Mol Cancer Ther; 15(4); 628–39. ©2016 AACR.


Biochemical Pharmacology | 1995

Suramin modulates cellular levels of hepatocyte growth factor receptor by inducing shedding of a soluble form.

Arturo Galvani; Cinzia Cristiani; Patrizia Carpinelli; Antonella Landonio; Federico Bertolero

Several growth factor receptors undergo shedding from the cell surface as a result of limited proteolysis via mechanisms that are at present poorly understood. By Western blotting of the conditioned media and cell lysates of several cell lines expressing the hepatocyte growth factor receptor, we found that suramin, a pharmacological agent that inhibits the activity of many growth factors, was able to induce shedding of this receptor. Increased levels of soluble hepatocyte growth factor receptor were observed in the conditioned media of GTL-16, a cell line over-expressing the receptor, as early as ten minutes after initial exposure to the agent, and incubation of this line with 300 microM suramin caused a 50% reduction in cell-associated levels of receptor after 6 hours. Although protein kinase C activation by treatment of cells with phorbol esters has previously been found to stimulate shedding of the hepatocyte growth factor receptor, this hitherto undescribed activity of suramin was not affected by protein kinase C inhibitors. Since shedding represents a possible means of down-modulation of receptor activity, suramin may inhibit the hepatocyte growth factor ligand/receptor system, not only by abrogation of hepatocyte growth factor binding to intact receptor, but also by induction of receptor shedding.

Collaboration


Dive into the Arturo Galvani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge